
Object inheritance with first-class classes:
Better JavaScript-style classes in Grace

Timothy Jones and Michael Homer

Once it was clear that the magic of class constructors behaving differently
when used in an inherits clause wasn’t going to cut it, I spent some time
thinking about how we could unify the definition of classes in a way that
gave them a relationship on the type level. Originally I defined a class as
having a method ‘inherit’ which takes the value of self and returns a new
class with the same constructor, but which just adds its definition to the self
object. This led to unwieldy backwards code where the constructor came
after the pass of self:

def car = object {
inherits vehicleFactory.newWithWheels(4)

}

This code became:

def car = object {
vehicleFactory.inherit(self).newWithWheels(4)

}

Furthermore, this was a rewrite that wouldn’t work on general expressions
(which defeated the whole purpose). In order to write the mechanism in the
right way I was struck by the notion that in the case of inheritance we don’t
even want to create a new object, we just want to pass the parameters of
the object constructor. So why am I invoking a method with the word ‘new’
in it? What if the two were separate? What if a class was an object with
two methods: ‘extend’ and ‘new’?

1 Classes as Objects

My major revelation was that the act of creating the object should be sepa-
rate from producing its definition — and that creating the object naturally
follows the definition. My issue with the current class definition (other than
it didn’t produce actual class inheritance) was that there wasn’t any rela-
tionship between classes: there wasn’t the notion of a class at the object
structure (and therefore type) level. The definition of “an object with a

1



method that returns an object” was overly vague, and not every object that
fulfils that definition is necessarily a class.

In the case above, we need to produce a definition of a vehicle with four
wheels. First we produce this definition, and then we use it to create an
object based on that definition:

def car = vehicleFactory.withWheels(4).new

And when you want to inherit from that definition, you don’t reference ‘new’
at all:

def car = object {
inherits vehicleFactory.withWheels(4)

}

The placement of the ‘new’ might seem a little odd in comparison to how
other languages deal with object creation, but I would argue that it’s now
in the right place. Even cooler, we can save the definition produced from
requesting ‘withWheels’, and create a bunch of vehicles with four wheels
without requesting the method again!

def carFactory = vehicleFactory.withWheels(4)
def car1 = carFactory.new
def car2 = carFactory.new

But let’s back up a bit first. What is a class?

1.1 Traits as Objects

It turns out that first we want to consider just a definition which is inher-
itable, rather than one that can necessarily create new definitions. A bit
like an abstract class! But really it’s a Trait, because it’s really just a loose
definition of an object that isn’t a class (we’re going to define class as some-
thing that explicitly constructs objects). So what’s a trait? Well, it’s just
an object (as promised), but it implements the following type:

type Trait〈T〉 = {
extend〈U〉(. . .) → U & T

}

We’re going to leave out what the extend method takes for parameters for
now, because we don’t want to jump in the deep end just yet. But we
can see from the type what’s going on here. A Trait is a definition of an
object of some type T, and can extends a definition of type U to produce
an object of their combined type. All this information is available to the
static type checker, because a trait is just a regular object and extend is a
regular method. The inherits clause in an object definition will accept any
object which implements this interface. This can be detected statically for
values which have been given a type, and can be detected at runtime if the
intended trait is not, in fact, a trait.

2



1.2 Classes as Trait + Factory

A class is a trait and a factory at the same time: an object definition that
can be inherited from or have new instances constructed. So we want the
type to be the addition of the Trait type and a type containing the method
‘new’. It will also need a generic type to represent the underlying object
definition, and it passes this along to Trait while also using it to specify the
type of objects it constructs.

type Class〈T〉 = Trait〈T〉 & {
new → T

}

As we would expect, a Grace class literal would produce an object of this
type. However, any object can implement either Trait or Class and immedi-
ately be able to become part of the inheritance mechanism. As was recently
proposed on top of the existing factory inheritance, we could define a method
that allowed delegation to an object with a method delegate:

method delegate〈T〉(to : T) → Trait〈T〉 { . . . }

inherits delegate(someObject)

We provide a full definition of this method later.
We could cause every object to be inheritable by having a default im-

plementation of the ‘extend’ method on the top object definition, but this
would result in a situation where these two objects are both correct, and
often appear to do the same thing, but have completely different definitions
of ‘self’.

object {
inherits vehicleFactory.withWheels(4)

}

object {
inherits vehicleFactory.withWheels(4).new

}

It seems like this is too easy to get wrong by accident, particularly for those
new to programming. We merely point it out to show it is possible if desired,
and if not, then the second definition will likely result in a static error (unless
the developer is being awfully liberal with Dynamic, in which case it will be
a runtime error).

Users who know what their doing are able to define their own inheritance
mechanisms, and as we will see later users who don’t need to know about this
system are not exposed to it and are incredibly unlikely to stumble across it.
If you wanted to be totally safe, you could just ban definitions of methods
with the name ‘extend’ in their dialect.

3



2 Traits as Object Mutators

So, how does the trait extend the given object with its definition? We
propose to solve this issues with open objects, which allow their structure to
be mutated by meta-operations. The most important property of these open
objects is that this structure mutation cannot be observed. We make this
point now to avoid the reader balking at the idea of structure mutation — in
order to gain access to the object underlying the meta-operations, the object
must be ‘sealed’, which prevents any further modification.

Now we introduce the full type of Trait:

type Trait〈T〉 = {
extend〈U〉(meta : Meta〈U〉) → U & T

}

An object of type Meta〈U〉 is a metaobject over an open object whose current
structure implements the type U. Thus, it’s the job of the extend method to
add its definition to the open object so that it also implements T, and then
seal and return the object.

2.1 The Inheritance Chain

Say we define the following classes and object.

class animal.makesNoise(noise : String) {
method makeNoise is public {

print(noise)
}

}

class snake.hasName(name′ : String) {
inherits animal.makesNoise("Hiss")

def name is readable, public = name′

print("{name} is making noise:")
self.makeNoise

}

def emphaticSnake = object {
inherits snake.hasName("Dave")

method makeNoise is public, override {
print("HISS!")

}
print("Here comes {self.name}!")

}

4



This is a good example of how the inheritance chain works, because it demon-
strates how the object is built up as it proceeds through the chain, and the
order of initialisation after the object is sealed. It also demonstrates why
both upcalls and downcalls work as expected. This is our simple explana-
tion of classes in terms of objects.

With our mutating traits, the object has method definitions added to it as
it travels up the inheritance chain. As the object crosses the boundary from
mutation to initialisation, the object is sealed. All of the method definitions
are available on the way back down through initialisation code.

animal.makesNoise("Hiss")

snake.hasName("Dave")

object emphaticSnake

Meta mutation Object initialisation

{makeNoise}

{name; makeNoise}

Dave is making noise:
HISS!

Here comes Dave!

Figure 1: The execution path of inheritance

Note that the class boxes are labelled as the result of the method call on
the class declaration: each is a specialised class with the string parameter
already set in it.

5



2.2 Translating Objects

The object literal is still the core primitive of the language (read: not defined
with a class), but it breaks down into a little jumble of meta-operations if
you want to know its exact semantics. There’s no need to actually translate
it this way, it’s just that this is equivalent to the way it works. In order
to display this as code we need to represent first-class methods, and our
translation uses a pseudo-code anonymous method for this syntax.

In order to demonstrate the translation, take the following object as an
example:

def myObject = object {
inherits myClass

honk

method honk is confidential {
print("honk")

}
}

Our translation follows these steps:

1. Request a new open object at the top of the block.

2. Yank the method definitions under this, above the inherits clause.

3. Add the remaining code into a special ‘initalize’ method.

4. Resolve to the inherits clause as a call to the extend method.

Here is an inscription in a mostly real version of Grace.

def meta = internal.newOpenObject
type Self = { honk → Done is confidential }

meta.addMethod("honk", method {
print("honk")

}) annotations(confidential)

meta.addMethod("initialize", method {
super.initialize
self.honk

}) annotations(confidential)

def myObject = myClass.extend(meta.cast〈Self〉)

6



We emphasise that this is partly pseudo-code: anonymous methods are not
real, and we have invented an interface for meta-operations. The syntax
of adding methods and such is not intended to be final. We would like for
these operations to be available to sufficiently advanced users through a meta
dialect, however.

Every part of the chain adds a new initialize method to the object, and
each method begins by invoking the one above it. When the object is sealed,
initialize is called automatically. Whether or not it remains available to the
object afterwards is merely a matter of design — it exists purely to ensure
that constructor code is run in the right context of self, so that constructors
may request confidential methods.

Note also the call to the cast method of the metaobject when it is passed
up the inheritance chain. This adds the type definitions to the type of the
metaobject itself, and cast just ensures that this definition exists. In the
case of this translation, the cast can never fail.

A particularly important definition is the one at the top of the inheri-
tance chain, which does not continue to extend the open object, but instead
performs the seal and initialisation. We assume here that this is the Object
Trait.

def top : Trait〈Object〉 = object {
method extend〈U〉(meta : Meta〈U〉) → U & Object {

// Top methods added here
meta.addMethod("asString", method { ...
meta.addMethod("initalize", method {})
meta.cast〈U & Object〉.initializeObject

}
}

The final line kills the metaobject and seals the real object, then runs the
initialisation method on it before returning it.

2.3 Translating Classes

Classes translate much the same way as objects. Consider again our object
example, this time as an anonymous class:

def myClass = class {
inherits mySuperClass

honk

method honk is confidential {
print("honk")

}
}

7



This becomes:

def myClass = object {
type BaseType = { honk → Done is confidential }
type Type is public = BaseType & mySuperClass.Type

method extend〈U〉(meta : Meta〈U〉) → U & Type {
meta.addMethod("honk", method {

print("honk")
})

meta.addMethod("initialize", method {
super.initialize
self.honk

})

mySuperClass.extend(meta.cast〈U & BaseType〉)
}

method new → Type {
object { inherits outer }

}
}

The key difference is that the extend method does not create the object.
An application of the new method does this for us. As far as the user is
concerned, the object appears to materialise at the top of the inheritance
chain fully formed (and sealed), as you would expect from class inheritance.

We use an anonymous class as an example here, but we can equally
translate the existing syntax on classes as well.

class vehicleFactory.withWheels(wheels : Number) → Vehicle {
method wheelCount → Number is public { wheels }

}

This becomes:

def vehicleFactory = object {
method withWheels(wheels : Number) → Class〈Vehicle〉 {

class {
method wheelCount → Number is public { wheels }

}
}

}

Which then translates the inner class as before.
We could even support the method class definition, to easily build facto-

ries with multiple constructors.

8



def vehicleFactory = object {
class withWheels(wheels : Number) → RoadVehicle {

method wheelCount → Number is public { wheels }
}

class withWings(wings : Number) → AirVehicle {
method wingCount → Number is public { wings }

}
}

The actual syntax is largely irrelevant to the actual problem, though.

2.4 Implementing Delegation

We can return to our example of delegation before, and provide an actual
definition using the fudged meta-operations from before.

method delegate〈T〉(to : T) → Trait〈T〉 {
def to′ = mirror(to)
object {

method extend〈U〉(meta : Meta〈U〉) → U & T {
meta.onNoSuchMethod { name, args →

to′.requestMethod(name) arguments(args)
}

meta.cast〈U & T〉.initializeObject
}

}
}

This shows that sufficiently advanced users are capable of writing their own
inheritance mechanisms with this system.

There’s also much more room for extensions to this system. We could
define Mixins as a Trait that can produce a union of another Trait.

type Mixin〈T〉 = Trait〈T〉 & {
union〈U〉(other : Trait〈U〉) → Mixin〈T & U〉

}

All of these first-class operations can be defined in the type system.

3 Conclusion

This implementation gives us all three of our longstanding criteria:

1. Class inheritance works as expected (downcalls)

9



2. We can inherit from arbitrary objects

3. We have a simple explanation of classes in terms of objects

1) and 3) have always been at odds, and most of the solutions to produce class
inheritance have eschewed an object-only stance. The factory inheritance
uses awful black magic — the position of a literal in the code! — to get
around this. Our proposal avoids this, and defines everything nicely in terms
of types.

The main point of contention, then, will be whether this is a ‘simple’
explanation of classes. The pseudo-code I translated into is not the prettiest,
but I would argue that for the most part we do not need to explain the meta-
operations (which are likely to be optimized away anyway): the notion of the
object travelling up the inheritance chain, adding methods as it goes, and
then proceeding back down the chain, executing constructor code, is rather
eloquent, and an adequate explanation of what happens until someone is so
hardcore that they want to actually write their own inheritance mechanism
(which I imagine is quite hardcore).

Whether we want to differentiate the creation of classes from the creation
of their instances with the extra call to ‘new’ may also be contentious. I see
it not as a hack to solve this problem but an actual enhancement to the
nature of the language, as it not only distinguishes their identities but has
the nifty side-effect of allowing class specialisations from pre-calling the class
method (as in the car factory example).

10


