
Grace - Phix
Graphics API for the Grace programming lanuage

Last updated on:

21-01-2014

Alex Sandilands

1

Andrew P. Black
Alex,

Thanks so much for sharing this. I have put a few comments throughout the document, as little yellow “post-it notes”. Most are suggestions for renaming, simplification, or completeness.

Overall, it’s great that you are discussing this interface. I was a bit surprised, though, that there were so few objects in the interfaces; it read more like a functional language library, where everything had to be a top-level function because they don’t have objects and methods. I think that Phix can be simplified a lot if you take advantage of objects.

Andrew P. Black
The document doesn’t really describe the graphical model, so I had trouble with drawables, windows and components. How are these used by an application? Do I create a canvass and draw on it? Do I create a canvas, and then create a line, and then place the line on the canvas? I can infer that the answer must be the latter, by scanning the canvas methods on page 10, but if you told me this up-front, I wouldn’t have to infer anything! OK, so what can I add to a canvas, that is, what are the Drawable objects? I don’t see that anywhere.

Finally, I didn’t see any text objects. Most GUIs need to put text objects somewhere!

Andrew P. Black
To evaluate Phix effectively, I would need to see some applications written using it. You probably have these, for example, re-writes of some of Kim’s ObjectDraw programs. Show the reader some, compare side by side with the old interface, and explain Phix applications are simpler. It’s hard for me to see how well an interface works without using it in some way.

	Andrew

Alex Sandilands Grace - Phix : API

Contents

1 Summary 3

1.1 Component Hierarchy . 3

2 Graphics 4

2.1 Interface . 4

3 Window 8

3.1 Interface . 8

4 Canvas 10

4.1 Interface . 10

5 Drawable 14

5.1 Interface . 14

6 Components 19

6.1 Interface . 19

7 Utilities 21

7.1 GMath . 21
7.2 Color . 22
7.3 Vector2 . 24

Page 2 of 26

Alex Sandilands Grace - Phix : API

1 Summary

This is a very simple graphics api, designed to be flexible with many di↵erent backends. Currently, the
GTK+3 backend is nearing completion. Animations are going to be added very soon then it will be finished.

We are also currently working on a Javascript backend, so the graphics library can be run on the web IDE
as well. The idea is that if someone wrote a program using the GTK backend library, their code could also
work on the web IDE without changing anything.

The library has been designed so the backend can be very easily changed, so if other graphics sources are
ported into Grace they can be used with Grace-Phix.

1.1 Component Hierarchy

This is a very basic draft of the hierarchy of how the graphical components work. This was made quite a
while ago so it is a little outdated, but the general idea still holds. A nicer diagram will be made soon.

Page 3 of 26

Andrew P. Black
What do the lines mean? Is-a? Containment?

Andrew P. Black
What’s a canvas?

Alex Sandilands Grace - Phix : API

2 Graphics

This module is a list of object constructors for all of the graphical components this library uses. It also has
constructors for the drawable shapes, which can be used and combined to create new drawable objects that
can be added and drawn on a canvas. It is split up into sections for readability, based on which type of
objects the methods are creating.
This is the main module that will be imported into a program when using the graphics library.

2.1 Interface

Listing 1 shows the interface for Grace-Phix graphics.

Listing 1: Grace-Phix graphics interface

// ����������������������� //

// //

// WINDOW METHODS //

// //

// ����������������������� //

// Default window, sized 640x480

method createWindow �> Window

// Creates and returns a default window at the position passed in

method createWindowAt(x : Number, y : Number) �> Window

// Creates and returns a window at the specified position with the

// specified size

method createWindowAt(x : Number, y : Number)

withSize(w : Number, h : Number) �> Window

// Creates and returns a window with the specified size

method createWindowWithSize(w : Number, h : Number) �> Window

// Creates a window with name, position and size specified

method createWindowCalled(t : String)

at(x : Number, y : Number)

withSize(w : Number, h : Number) �> Window

// ����������������������� //

// //

// CANVAS METHODS //

// //

// ����������������������� //

// Default canvas sized 640x480

method createCanvas �> Canvas

// Canvas sized wxh

method createCanvasWithSize(w : Number, h : Number) �> Canvas

Graphics continued on next page. . . Page 4 of 26

Andrew P. Black
What object has these methods? If it’s some sort of window class, then there is no need to repeat “window” in the names.
For example, it’s better to write aWindow.create than aWindow.createWindow.

Andrew P. Black
named rather than called?

Andrew P. Black
“create” is also superfluous in the method name; it describes the mechanism, rather than the result. aWindow.new, aWindowAt(), aWindow.ofSize()at() are less repetitive and more descriptive of the result.

Andrew P. Black
In general, I would prefer to identify both locations and extents by Vector2.x()y() objects, than by pairs of numbers.

Alex Sandilands Grace - Phix : API Graphics (continued)

// ����������������������� //

// //

// COMPONENT METHODS //

// //

// ����������������������� //

// BOXES

method createVerticalBox �> Container

// A vertical box containing the list of components l

method createVerticalBoxContaining(l : List<Component>) �> Container

method createHorizontalBox �> Container

// A horizontal box containing the list of components l

method createHorizontalBoxContaining(l : List<Component>) �> Container

// BUTTONS

// Default button, no label, no actions

method createButton �> Button

// Button with a label

method createButtonCalled(s : String) �> Button

// Button with a label and an action on clicked

method createButtonCalled(s : String) onClicked(b : Block) �> Button

// ����������������������� //

// //

// DRAWABLE METHODS //

// //

// ����������������������� //

// RECTANGLES

// Rectangle. Has default values: Black, at (25, 25), sized 50x50

method createRectangle �> Rectangle

// Rectangle at (x, y) sized wxh colored c

method createRectangleAt(x : Number, y : Number)

sized(w : Number, h : Number)

colored(c : Color) �> Rectangle

Graphics continued on next page. . . Page 5 of 26

Andrew P. Black
aVerticalBox.with(…)
aHorizontalBox.with(…) , or perhaps anHBox and aVBox?

Alex Sandilands Grace - Phix : API Graphics (continued)

// CIRCLES

// Circle. Has default values: Black, around (50, 50), radius 25

method createCircle �> Circle

// Circle around (x, y) radius r colored c

method createCircleAround(x : Number, y : Number)

radius(r : Number)

colored(c : Color) �> Circle

// OVALS

// Oval. Has default values: Black, around (50, 50) width 50 height 25

method createOval �> Oval

// Oval around (x, y) size wxh colored c

method createOvalAt(x : Number, y : Number)

sized(w : Number, h : Number)

colored(c : Color) �> Oval

// SECTORS

// Sector. Has default values: Black, around (50, 50), radius 25, from 0 to pi

method createSector �> Sector

// Sector around (x, y) radius r from f to t colored c

method createSectorAround(x : Number, y : Number)

from(f : Number)

to(t : Number)

radius(r : Number)

colored(c : Color) �> Sector

// ARCS

// Arc. Has default values: Black, around (50, 50), radius 25, width 10 from 0 to 2pi

method createArc �> Arc

// Arc around (x, y) radius r width w from f to t colored c

method createArcAround(x : Number, y : Number)

from(f : Number)

to(t : Number)

radius(r : Number)

width(w : Number)

colored(c : Color) �> Arc

Graphics continued on next page. . . Page 6 of 26

Andrew P. Black

Andrew P. Black
What’s a sector? Maybe add figures to the documentation?

Alex Sandilands Grace - Phix : API Graphics (continued)

// LINE

// Line. Has default values: Black, from (25, 25) to (75, 75)

method createLine �> Line

// Line from (x1, y1) to (x2, y2) colored b

method createLineFrom(x1 : Number, y1 : Number)

to(x2 : Number, y2 : Number)

colored(c : Color) �> Line

// Line at (x, y) with length l and anti�clockwise angle a in radians

method createLineAt(x : Number, y : Number)

length(l : Number)

angle(a : Number)

colored(c : Color) �> Line

// TEXT

// Text. Has default values: Black, at (45, 48) saying ”Text”

method createText �> Text

// Text saying t at (x, y) colored c

method createTextSaying(t : String)

at(x : Number, y : Number)

colored(c : Color) �> Text

// IMAGE

// Image at (x, y) sized wxh from file: path

method createImageAt(x : Number, y : Number)

sized(w : Number, h : Number)

from(path : String) �> Image

Page 7 of 26

Alex Sandilands Grace - Phix : API Graphics (continued)

3 Window

This component is a top level graphical frame, which is required for anything that needs to be displayed. It
is also of type container as it can contain other components which get displayed in the window. Whenever
you add a new component to the window it gets displayed at the bottom, as the window uses a vertical box.
You can add other boxes to the window if you want components to be displayed in di↵erent directions and
orders.

3.1 Interface

Listing 2 shows the interface for a Grace-Phix window.

Listing 2: Grace-Phix window interface

type Window = Container & {

// Displays the window and all components in the window

// then starts the main loop.

display �> Done

// Return the title of this window

title �> String

// Sets the title of this window

title:= (t : String) �> Done

// Return the size of this window with a vector

// First component is width, second is height

size �> Vector2

// Set the size of this window with a vector

// First component is width, second is height

size:= (s : Vector2) �> Done

// Return the width of this window

width �> Number

// Set the width of this window

width:= (w' : Number) �> Done

// Return the height of this window

height �> Number

// Set the height of this window

height:= (h' : Number) �> Done

// Return the position of this window with a vector

// First component is width, second is height

position �> Vector2

// Set the posistion of this window with a vector

// First component is width, second is height

position:= (p : Vector2) �> Done

Window continued on next page. . . Page 8 of 26

Andrew P. Black
It seems rather limiting to require that everything be in a window. Why not let programmers choose whether or not they want to put stuff in a window? Drawing on the raw display certainly ought to be possible.

Andrew P. Black
What’s the “main loop”

Andrew P. Black
Are you assuming that all windows are rectangular? Isn’t this so-last-century?

Alex Sandilands Grace - Phix : API Window (continued)

// Set what happens when the mouse is pressed in this window

mousePressed:= (b : Block) �> Done

// Set what happens when the mouse is released in this window

mouseReleased:= (b : Block) �> Done

// Set what happens when the mouse is dragged in this window

mouseDragged:= (b : Block) �> Done

// Sets what happens when the key is pressed

onKey(key : String) do(b : Block) �> Done

asString �> String

}

Page 9 of 26

Alex Sandilands Grace - Phix : API Window (continued)

4 Canvas

This component is a display bu↵er. It contains a list of drawable objects which get painted to the bu↵er
and can be manipulated. Dispite appearing to have similar methods as a container, it is not as it doesn’t
contain components, only drawables. The canvas can have external drawables objects added to it, or it can
create it’s own basic drawables directly.

4.1 Interface

Listing 3 shows the interface for a Grace-Phix canvas.

Listing 3: Grace-Phix canvas interface

type Canvas = Component & {

// Adds a drawable object d to the canvas.

// The same drawable object cannot be added more than once, so clone it before adding a new one.

// A set could work here, but it would make the ordering methods much more complicated.

// Lists are also very readable

add(d : Drawable) �> Boolean

// Adds the list l of drawables to the canvas.

// If one of the drawables is already on the canvas then the method

// will break and return false, with the rest of the drawables in l

// not being added.

addAll(l : List<Drawable>) �> Boolean

// Remove the drawable d from the canvas.

// Returns true if one instance was found and removed, or false otherwise.

remove(d : Drawable) �> Boolean

// Removes the drawable at the index ind.

// Returns false if the index was out of bounds.

removeWithIndex(ind : Number) �> Boolean

// Returns the drawable at index ind

getWithIndex(ind : Number) �> Drawable

// Returns the index of the top drawable that contains (x, y) or

// 0 if none are found. Note that it searchs from the end of the list

// to the beggining of the list, as when painting the canvas paints from

// the start of the list.

findDrawableAt(x : Number, y : Number) �> Number

// Sends the drawable d to the back of the display bu↵er

sendToBack(d : Drawable) �> Done

// Sends the drawable at index ind to the back of the display bu↵er

sendIndexToBack(ind : Number) �> Done

// Brings the drawable d to the front of the display bu↵er

bringToFront(d : Drawable) �> Done

Canvas continued on next page. . . Page 10 of 26

Andrew P. Black
Shouldn’t the method that adds a list be called addAll?

Andrew P. Black
You haven’t describes your display or drawing model, so I don’t yet understand what a display buffer is.

Andrew P. Black
It looks like a Canvas should either HAVE a collection, or it should BE a collection. Instead you are implementing a bit of the collection protocol, using different names. It’s core to OO that we use the same names for the same operations on different kinds of objects. So, for example, “getWithIndex” is called “at” on other indexed collections.

Andrew P. Black
This implies that a Canvass is a list. Is that right?

Andrew P. Black
Does this just reorder the list? Is it required that d be in the List already?

Alex Sandilands Grace - Phix : API Canvas (continued)

// Brings the drawable at the index ind to the front of the display bu↵er

bringIndexToFront(ind : Number) �> Done

// Sends the drawable d back one position in the draw order

sendBack(d : Drawable) �> Done

// Sends the drawable at index ind back one position in the draw order

sendIndexBack(ind : Number) �> Done

// Brings the drawable d forward one position in the draw order

bringForward(d : Drawable) �> Done

// Brings the drawable at index ind forward one position in the draw order

bringIndexForward(ind : Number) �> Done

// Gets the size of this canvas as a 2d Vector

// First component is width, second is height

size �> Vector2

// Sets the size of this canvas with a 2d Vector s'
// First component is width, second is height

size:= (s : Vector2) �> Done

// Returns the width of this canvas

width �> Number

// Set the width of this canvas

width:= (w' : Number) �> Done

// Returns the height of this canvas

height �> Number

// Set the height of this canvas

height:= (h' : Number) �> Done

// Set whether this canvas can actually paint things. True by default

setPaintable(b : Boolean) �> Done

// Asks the canvas to repaint

paint �> Done

// Returns a string with infomation about this canvas

asString �> String

Canvas continued on next page. . . Page 11 of 26

Andrew P. Black
makeVisible and makeInvisible?

Alex Sandilands Grace - Phix : API Canvas (continued)

// ����������������
// DRAWNING METHODS

// ����������������

// The color that shapes will be drawn with when using the canvas draw methods

color �> col.Color

// Defines whether or not the shapes drawn by the canvas will be filled

fill �> Boolean

// Sets what happens when the mouse is pressed inside the canvas

mousePressed:= (b : Block) �> Done

// Sets what happens when the mouse is released inside the canvas

mouseReleased:= (b : Block) �> Done

// Sets what happens when the mouse is clicked inside the canvas

mouseClicked:= (b : Block) �> Done

// Rectangle at (x, y) sized wxh colored c

drawRectangleAt(x : Number, y : Number) sized(w : Number, h : Number) �> Drawable

// Circle around (x, y) radius r colored c

drawCircleAround(x : Number, y : Number) radius(r : Number) �> Drawable

// Oval around (x, y) size wxh colored c

drawOvalAt(x : Number, y : Number) sized(w : Number, h : Number) �> Drawable

// Sector around (x, y) radius r from f to t colored c

drawSectorAround(x : Number, y : Number)

from(f : Number)

to(t : Number)

radius(r : Number) �> Drawable

// Arc around (x, y) radius r width w from f to t colored c

drawArcAround(x : Number, y : Number)

from(f : Number)

to(t : Number)

radius(r : Number)

width(w : Number) �> Drawable

// Line from (x1, y1) to (x2, y2) colored b

drawLineFrom(x1 : Number, y1 : Number) to(x2 : Number, y2 : Number) �> Drawable

// Line at (x, y) with length l and anti�clockwise angle a in radians

drawLineAt(x : Number, y : Number) length(l : Number) angle(a : Number) �> Drawable

// Text saying t at (x, y) colored c

drawTextSaying(t : String) at(x : Number, y : Number) �> Drawable

Canvas continued on next page. . . Page 12 of 26

Alex Sandilands Grace - Phix : API Canvas (continued)

// Image at (x, y) sized wxh from file: path

drawImageAt(x : Number, y : Number)

sized(w : Number, h : Number)

from(path : String) �> Drawable

}

Page 13 of 26

Alex Sandilands Grace - Phix : API Canvas (continued)

5 Drawable

This module contains all of the basic objects that can be painted on a canvas. The canvas can paint any
object that is of type Drawable. You can create your own object that is made up of lots of these basic
drawable types, make sure it is of type Drawable, then simply add it to the canvas to be drawn.

5.1 Interface

Listing 4 shows the interface for a Grace-Phix drawable.

Listing 4: Grace-Phix drawable interface

// Abstract super class for drawable objects

type Drawable = {

// Cartesian coordinates for the location on the 2d plane

location �> Vector2

// If true, this drawable will be drawn

visible �> Boolean

// Returns the x cartesian coordinate

x �> Number

// Returns the y cartesian coordinate

y �> Number

// Sets the x cartesian coordinate

x := (x' : Number) �> Done

// Sets the y cartesian coordinate

y := (y' : Number) �> Done

// Sets the x,y cartesian coordinate with a vector

moveTo := (l : Vector2) �> Done

// Moves the object by dx in the x direction, dy in the y direction

moveBy(dx : Number, dy : Number) �> Done

// Paints this object to a canvas, using the graphical object gfx

// of that canvas

draw(gfx) �> Done

// Checks if (x, y) is inside the drawable

contains(x : Number, y : Number) �> Boolean

// Returns an identical object

clone �> Drawable

}

Drawable continued on next page. . . Page 14 of 26

Alex Sandilands Grace - Phix : API Drawable (continued)

// Drawable rectangle type

type Rectangle = Drawable & {

// Vector holding the width and height of this rectangle

// First component is width, second is height

size �> Vector2

// The color of this rectangle

color �> Color

// Defines whether this rectangle should filled

fill �> Boolean

// If not filled, this is the width of the outline

lineWidth �> Number

// Returns the width of this rectangle

width �> Number

// Sets the width of this rectangle

width := (w' : Number) �> Done

// Returns the height of this rectangle

height �> Number

// Sets the height of this rectangle

height := (h' : Number) �> Done

}

// Drawable circle type

// This is a sector, but the ”from” and ”to” values are constants: 0 �> 2pi

type Circle = Drawable & {

// The radius of this circle

radius �> Number

// The color of this circle

color �> Color

// Defines whether this circle should filled

fill �> Boolean

// If not filled, this is the width of the outline

lineWidth �> Number

}

Drawable continued on next page. . . Page 15 of 26

Alex Sandilands Grace - Phix : API Drawable (continued)

// Drawable oval type

type oval = Drawable & {

// Vector holding the width and height of this oval

// First component is width, second is height

size �> Vector2

// The color of this oval

color �> Color

// Defines whether this oval should be filled

fill �> Boolean

// If not filled, this is the width of the outline

lineWidth �> Number

// Returns the width of the oval

width �> Number

// Sets the width of the oval

width := (w' : Number) �> Done

// Returns the height of the oval

height �> Number

// Sets the height of the oval

height := (h' : Number) �> Done

}

// Drawable sector type. Like a circle but you can define where

// (on the complex plane) it starts being drawn, and where it ends

type Sector = Drawable & {

// The radius of the sector

radius �> Number

// The color of this sector

color �> Color

// Defines whether this sector should be filled

fill �> Boolean

// If not filled, this is the width of the line

lineWidth �> Number

// Angle the sector starts drawing from (in radians)

from �> Number

// Angle the sector stops drawing at (in radians)

to �> Number

}

Drawable continued on next page. . . Page 16 of 26

Alex Sandilands Grace - Phix : API Drawable (continued)

// Drawable arc type. This is like a sector except you can define a certain

// ammount of the inside to not be filled in

type Arc = Drawable & {

// The radius of the arc

radius �> Number

// The width of the arc

width �> Number

// The color of the arc

color �> Color

// Defines whether this arc should be filled

fill �> Boolean

// If not filled, this is the width of the outline

lineWidth �> Number

// Angle the arc starts drawing from (in radians)

from �> Number

// Angle the arc stops drawing at (in radians)

to �> Number

}

// Drawable line type

type Line = Drawable & {

// The color of the line

color �> Color

// The width of the line

lineWidth �> Number

// Catesian coordinates of the start of the line

from �> Vector2

// Cartesian coordinates of the end of the line

to �> Vector2

}

Drawable continued on next page. . . Page 17 of 26

Alex Sandilands Grace - Phix : API Drawable (continued)

// Drawable text type

type Text = Drawable & {

// The color of the text

color �> Color

// The string that this text writes

text �> String

// The font size of the text

size �> Number

}

// Drawable image type. Takes a string pathway to the image file,

// which must be a png

type Image = Drawable & {

// Path to the image, relative to the file that is using this object

filename �> String

// Returns the width of the image

width �> Number

// Sets the width of the image

width := (w' : Number) �> Done

// Returns the height of the image

height �> Number

// Sets the height of the image

height := (h' : Number) �> Done

}

Page 18 of 26

Alex Sandilands Grace - Phix : API Drawable (continued)

6 Components

This module has the graphical components that are displayed on the screen. Other than utility objetcs
and drawables, all objects in Grace-Phix are components at the top level. For example, a verticale box is
a component and a container, so it can contain other components, including other containers. Only minor
components are defined in this module, the large ones such as window and canvas have their own modules.

6.1 Interface

Listing 5 shows the interface for Grace-Phix components.

Listing 5: Grace-Phix components interface

// Top level type for graphical user interface objects.

type Component = {

parent �> Component

// TODO

// This type also has a getComponent method which returns the

// actual graphics object this type wraps up. Not sure how to

// approach this as the type would be di↵erent for di↵erent

// backend graphics libraries.

}

// Type for components that can contain other components

type Container = Component & {

// Adds component c to this container.

// Returns true if added, false if c was already in the container

add(c : Component) �> Boolean

// Adds every component in the list l to this container.

// Returns false if one of the components was already in the container

addAll(l : List<Component>) �> Boolean

// Attempts to remove the component c from this container

remove(c : Component) �> Boolean

// Returns a list of all the components in this container

getChildren �> List<Component>

}

Components continued on next page. . . Page 19 of 26

Alex Sandilands Grace - Phix : API Components (continued)

// Type for a button, which is a component that can be clicked

// to perform actions

type Button = Component & {

// Returns the label on this button

label �> String

// Sets the label on this button

label:= (s : String) �> Done

// Returns a vector of the width and height of this button

// First coordinate is width, second is height

size �> Vector2

// Sets the size of this button, with a vector

// First coordinate is width, second is height

sized:= (s' : Vector2) �> Done

// Returns the width of this button

width �> Number

// Sets the width of this button

width:= �> Done

// Returns the height of this button

height �> Number

// Sets the height of this button

height:= �> Done

// Sets what happens when this button is clicked

clicked(b : Block) �> Done

// Sets what happens when this button is pressed

pressed(b : Block) �> Done

// Sets what happens when this button is released

released(b : Block) �> Done

}

Page 20 of 26

Alex Sandilands Grace - Phix : API Components (continued)

7 Utilities

The following are the utility modules that the Grace-Phix library uses.

7.1 GMath

Note that this module doesn’t create an object, so it doesn’t have any type definitions. These are all the
methods that the math module provides.

Listing 6 shows the interface for GMath.

Listing 6: GMath interface

// Constants

def pi : Number is readable = 3.14159265358979323846

def half pi : Number is readable = 1.57079632679489661923

def two pi : Number is readable = 6.28318530717958647692

//METHODS

// Return the absolute value

method abs(value : Number) �> Number

// Returns the square root of the given value

method sqrt(value : Number) �> Number

// Returns the minimum value of the two given values

method min(value : Number, value' : Number) �> Number

// Returns the maximum value of the two given values

method max(value : Number, value' : Number) �> Number

// Clamps the given value between the upper and lower thresholds

method clamp(value : Number) between(lower : Number, upper : Number) �> Number

// Clamps the given value so that it is not greater then the given threshold

method clamp(value : Number) below(threshold : Number) �> Number

// Clamps the given value so that it is not less than the given threshold

method clamp(value : Number) above(threshold : Number) �> Number

// Calculates the factorial of the given input

method fact(value : Number) �> Number

// Converts degrees to radians

method toRadians(value : Number) �> Number

// Converts radians to degrees

method toDegrees(value : Number) �> Number

// Normalizes radians to be between 0 and 2pi

method normalizeRadians(value : Number) �> Number

Utilities continued on next page. . . Page 21 of 26

Andrew P. Black
Are these max and min operations?

Andrew P. Black
Shouldn’t all of these just be methods on Numbers? Why do we need a package?

Andrew P. Black
It seems like we need an angle object here, and perhaps methods radians and degrees on Numbers that create angles.

Alex Sandilands Grace - Phix : API Utilities (continued)

// Binomial Coe�cient

method n(n : Number) choose(k : Number) �> Number

// Returns the sine of value

method sin(value : Number) �> Number

// Returns the cosine of value

method cos(value : Number) �> Number

// Returns the tangent of value

// Undefined on pi/2 and 3pi/2 so will throw an error on these values

method tan(value : Number) �> Number

// Returns the arcsine of value

method asin(value : Number) �> Number

// Returns the arccosine of value

method acos(value : Number) �> Number

// Returns the arctangent of value

method atan(value : Number) �> Number

7.2 Color

This color module provides a color object and many constructor methods.

Listing 7 shows the interface for Color.

Listing 7: Color interface

// Object that holds the rgba components of a color.

// Values are between 0 and 1

type Color = {

// Returns the red component of this color

r �> Number

// Returns the green component of this color

g �> Number

// Returns the blue component of this color

b �> Number

// Returns the alpha component of this color

a �> Number

// Sets the red component of this color

r := (r' : Number) �> Done

// Sets the green component of this color

g := (g' : Number) �> Done

Utilities continued on next page. . . Page 22 of 26

Andrew P. Black
These might return angles.

Andrew P. Black
These might be methods on angles.

Andrew P. Black
Call it “alpha” or α

Alex Sandilands Grace - Phix : API Utilities (continued)

// Sets the blue component of this color

b := (b' : Number) �> Done

// Sets the alpha component of this color

a := (a' : Number) �> Done

// Additive binary operator for this color.

+(other : Color) �> Color

// Returns a brighter copy of this color, by a factor of 0.7

brighter �> Color

// Returns a darker copy of this color, by a factor of 0.7

darker �> Color

// Returns an inverted copy of this color

invert �> Color

// Returns a greyscale copy of this color

greyscale �> Color

// Returns a string of this color, format: rgb(r, g, b)

asString �> String

}

// �����������������
// CONSTRUCTOR METHODS

// �����������������

// Constructs and returns a black color object

method black �> Color

// Constructs and returns a blue color object

method blue �> Color

// Constructs and returns a cyan color object

method cyan �> Color

// Constructs and returns a doge color object

method doge �> Color

// Constructs and returns a magenta color object

method magenta �> Color

// Constructs and returns a grey color object

method grey �> Color

// Constructs and returns a green color object

method green �> Color

// Constructs and returns a orange color object

method orange �> Color

Utilities continued on next page. . . Page 23 of 26

Andrew P. Black
provide HSL access too?

Andrew P. Black

Andrew P. Black

Andrew P. Black
Invert in which color space?

Andrew P. Black
Should return a well-known name, if there is one.

Andrew P. Black
I don’t understand this. I can see that there should be a method cColor.grey(fraction) that answers a color that varies from white to black as fraction varies from 0 to1

Andrew P. Black
doge isn’t a color that I’ve ever heard of!

Alex Sandilands Grace - Phix : API Utilities (continued)

// Constructs and returns a pink color object

method pink �> Color

// Constructs and returns a red color object

method red �> Color

// Constructs and returns a white color object

method white �> Color

// Constructs and returns a yellow color object

method yellow �> Color

// Constructs and returns a color object from input r,g,b values

method fromRGB(r : Number, g : Number, b : Number) �> Color

// Constructs and returns a color object from input r,g,b,a values

method fromRGB(r : Number, g : Number, b : Number) withAlpha(a : Number) �> Color

7.3 Vector2

Vectors are used throughout Grace-Phix, not just for cartesian coordinates but for storing any variables that
can be conceptually grouped together. For example, width and height could be stored together in a two
dimensional vector.

This module provides a Vector2 object and many constructor methods.

Listing 8 shows the interface for Vector2.

Listing 8: Vector2 interface

// Two dimensional Vector type.

// Ie is has an x and y coordinate.

type Vector2 = {

// The first coordinate of this vector

x �> Number

// The second coordinate of this vector

y �> Number

// OPERATORS

// Returns true if this vector has the same values as the given vector v

==(v : Vector2) �> Boolean

// Returns true if this vector has di↵erent values from the given vector v

!=(v : Vector2) �> Boolean

// Creates a new 2d vector as the result of adding this vector with

// the given vector v

+(v : Vector2) �> Vector2

Utilities continued on next page. . . Page 24 of 26

Andrew P. Black
Aren’t width and height cartesian coordinates?

Alex Sandilands Grace - Phix : API Utilities (continued)

// Creates a new 2d vector as the result of subtracting this vector

// from the the given vector v

�(v : Vector2) �> Vector2

// Creates a new 2d vector as the result of multiplying the components

// of this vector by the given scalar s

∗(s : Number) �> Vector2

// Creates a new 2d vector as the result of dividing the components

// of this vector by the given scalar s

/(s : Number) �> Vector2

// Returns if the magnitude of this vector is less than the

// magnitude of the given vector

<(v : Vector2) �> Boolean

// Returns if the magnitude of this vector is greater than the

// magnitude of the given vector

>(v : Vector2) �> Boolean

// Returns the inversion of this vector

prefix� �> Vector2

// METHODS

// Returns the magnitude of this vector

magnitude �> Number

// Returns a normalised version of this vector

normalize �> Vector2

// Returns a new vector that is this vector clamped between the two values

clampBetween(lower : Number, upper : Number) �> Vector2

// Returns a new vector that is this vector clamped above the given threshold

clampAbove(threshold : Number) �> Vector2

// Returns a new vector that is this vector clamped below the given threshold

clampBelow(threshold : Number) �> Vector2

// Creates a new 2d vector as the result of adding the given scalar s to this vector

addScalar(s : Number) �> Vector2

// Creates a new 2d vector as the result of subtracting the given scalar s from this vector

subScalar(s : Number) �> Vector2

// Returns the vector as a list

toList �> List

// Returns the vector as a string

asString �> String

}

Utilities continued on next page. . . Page 25 of 26

Andrew P. Black
I don’t understand what this means. Both components of the vector bounded? The magnitude bounded?

Andrew P. Black
How?

Andrew P. Black
Isn’t it more elegant to make + and - work between Numbers & Vector2s, than to have three different operation names?

Alex Sandilands Grace - Phix : API Utilities (continued)

// CONSTRUCTOR METHODS

// Creates a new zero 2d vector

method zero �> Vector2

// Creates a new 2d vector and initialises it with the given x and y values

method setCoord(x : Number, y : Number) �> Vector2

// Creates a new 2d vector and initialises it with the values of the given

// 2d vector

method setVector2(v : Vector2) �> Vector2

// Creates a new 2d vector and initialises it with the x and y values of the

// given 3d vector and truncates the z value

method setVector3(v : Vector3) �> Vector2

// Creates a new 2d vector and initialises it with the x and y values of the

// given 4d vector and truncates the z and w values

method setVector4(v : Vector4) �> Vector2

// Creates a new 2d vector initialised with x: 1, y: 0

method xAxis �> Vector2

// Creates a new 2d vector initialised with x: 0, y: 1

method yAxis �> Vector2

// VECTOR MATH

// Returns the dot product of this vector with the other given vector

method dot(v1 : Vector2, v2 : Vector2) �> Number is public

// Returns the distance from this vector to the other vector

method distanceBetween(v1 : Vector2, v2 : Vector2) �> Number is public

// Returns the angle between this vector and the other vector, in radians

method angleBetween(v1 : Vector2, v2 : Vector2) �> Number is public

Page 26 of 26

Andrew P. Black
On what object? aVector2?

Andrew P. Black
Vectors are immutable, I hope, so we don’t “set” them. In any case, we don’t use the “set” word in grace for changing a component. Isn’t this just the Vector2.x()y() method?

Andrew P. Black
isn’t this just v.copy?

Andrew P. Black
Is this really needed? If so, v.withoutZ would be a better name

Andrew P. Black
ditto

Andrew P. Black
Hard to justify these names, in my mind. I would think that infinity@0 would be the x-axis.

Andrew P. Black
these should all the methods on the first argument, no?

