
Programming with Grace

Draft of February 3, 2014

Programming with Grace

Kim B. Bruce
Pomona College

DRAFT!

DO NOT DISTRIBUTE WITHOUT PRIOR PERMISSION

Website: http://eventfuljava.cs.williams.edu

Printed on February 3, 2014

©2014 Kim B. Bruce, Andrea Danyluk, and Tom Murtagh

Comments, corrections, and other feedback appreciated

kim@cs.pomona.edu

iv

Chapter 1

What is Programming Anyway?

Most of the machines that have been developed to improve our lives serve a single purpose. Just try
to drive to the store in your washing machine or vacuum the living room with your car and this
becomes quite clear. Your computer, by contrast, serves many functions. In the office or library,
you may find it invaluable as a word processor. Once you get home, slip in a DVD or connect to a
media site on the internet and your computer takes on the role of a television. Start up a flight
simulator and it assumes the properties of anything from a hang glider to the Concorde. Launch an
mp3 player and you suddenly have a music system. This, of course, is just a short sample of the
functions a typical personal computer can perform. Clearly, the computer is a very flexible device.

While the computer’s ability to switch from one role to another is itself amazing, it is even more
startling that these transformations occur without making major physical changes to the machine.
Every computer system includes both hardware, the physical circuitry of which the machine is
constructed, and software, the programs that determine how the machine will behave. Everything
described above can be accomplished by changing the software used without changing the machine’s
actual circuitry in any way. In fact, the changes that occur when you switch to a new program
are often greater than those you achieve by changing a computer’s hardware. If you install more
memory or a faster network card, the computer will still do pretty much the same things it did
before but a bit faster (hopefully!). On the other hand, by downloading a new application program
through your web browser, you can make it possible for your computer to perform completely new
functions.

Software clearly plays a central role in the amazing success of computer technology. Very few
computer users, however, have a clear understanding of what software really is. This book provides
an introduction to the design and construction of computer software in the programming language
named Grace. By learning to program in Grace, you will acquire a useful skill that will enable you
to construct software of your own and to learn other languages that are used in industry. More
importantly, you will gain a clear understanding of what a program really is and how it is possible
to radically change the behavior of a computer by constructing a new program.

A program is a set of instructions that a computer follows. We can therefore learn a good bit
about computer programs by examining the ways in which instructions written for humans resemble
and differ from computer programs. In this chapter we will consider several examples of instructions
for humans in order to provide you with a rudimentary understanding of the nature of a computer
program. We will then build on this understanding by presenting a very simple but complete
example of a computer program written in Grace. Like instructions for humans, the instructions

1

that make up a computer program must be communicated to the computer in a language that it
comprehends. Grace is such a language. We will discuss the mechanics of actually communicating
the text of a Grace program to a computer so that it can follow the instructions contained in
the program. Finally, you have undoubtedly already discovered that programs don’t always do
what you expect them do to. When someone else’s program misbehaves, you can complain. When
this happens with a program you wrote yourself, you will have to figure out how to change the
instructions to eliminate the problem. To prepare you for this task, we will conclude this chapter by
identifying several categories of errors that can be made when writing a program.

1.1 Without Understanding

You have certainly had the experience of following instructions of one sort or another. Electronic
devices from computers to cameras come with thick manuals of instructions. Forms, whether they
be tax forms or the answer sheet for an SAT exam, come with instructions explaining how they
should be completed. You can undoubtedly easily think of many other examples of instructions you
have had to follow.

If you have had to follow instructions, it is likely that you have also complained about the quality
of the instructions. The most common complaint is probably that the instructions take too long to
read. This, however, may have more to do with our impatience than the quality of the instructions.
A more serious complaint is that instructions are often unclear and hard to understand.

It seems obvious that a set of instructions is more likely to be followed correctly if they are
easy to understand. This “obvious” fact, however, does not generalize to the types of instructions
that make up computer programs. A computer is just a machine. Understanding is something
humans do, but not something machines do. How can a computer understand the instructions in a
computer program? The simple answer is that it cannot. As a result, the instructions that make up
a computer program have to satisfy a very challenging requirement. It must be possible to follow
them correctly without actually understanding them.

This may seem like a preposterous idea. How can you follow instructions if you don’t understand
them? Fortunately, there are a few examples of instructions for humans that are deliberately
designed so that they can be followed without understanding. Examining such instructions will give
you a bit of insight into how a computer must follow the instructions in a computer program.

First, consider the “mathematical puzzle” described below. To appreciate this example, don’t
just read the instructions. Follow them as you read them.

1. Pick a number between 1 and 40.

2. Subtract 20 from the number you picked.

3. Multiply by 3.

4. Square the result.

5. Add up the individual digits of the result.

6. If the sum of the digits is even, divide by 2.

7. If the result is less than 5 add 5, otherwise subtract 4.

2

8. Multiply by 2.

9. Subtract 6.

10. Find the letter whose position in the alphabet is equal to the number you have obtained (a=1,
b=2, c=3, etc.)

11. Think of a country whose name begins with this letter.

12. Think of a large mammal whose name begins with the second letter of the country’s name.

You have probably seen puzzles like this before. The whole point of such puzzles is that you are
supposed to be surprised that it is possible to predict the final result produced even though you are
allowed to make random choices at some points in the process. In particular, this puzzle is designed
to leave you thinking about elephants. Were you thinking about an elephant when you finished?
Are you surprised we could predict this?

The underlying reason for such surprise is that the instructions are designed to be followed
without being understood. The person following the instructions thinks that the choices they get to
make in the process (choosing a number or choosing any country whose name begins with “D”),
could lead to many different results. A person who understands the instructions realizes this is an
illusion.

To understand why almost everyone who follows the instructions above will end up thinking
about elephants, you have to identify a number of properties of the operations performed. The
steps that tell you to multiply by 3 and square the result ensure that after these steps the number
you are working with will be a multiple of nine. When you add up the digits of any number that is
a multiple of nine, the sum will also be a multiple of nine. Furthermore, the fact that your initial
number was relatively small (less than 40), implies that the multiple of nine you end up with is
also relatively small. In fact, the only possible values you can get when you sum the digits are 0, 9
and 18. The next three steps are designed to turn any of these three values into a 4 leading you
to the letter “D”. The last step is the only point in these instructions where something could go
wrong. The person following them actually has a choice at this point. There are four countries on
Earth whose names begin with “D”: Denmark, Djibouti, Dominica and the Dominican Republic.
Luckily, for most readers of this text, Denmark is more likely to come to mind than any of the
other three countries (even though the Dominican Republic is actually larger in both land mass and
population).

This example should make it clear that it is possible to follow instructions without understanding
how they work. It is equally clear that it is not possible to write instructions like those above without
understanding how they work. This contrast provides an important insight into the relationship
between a computer, a computer program and the author of the program. A computer follows the
instructions in a program the way you followed the instructions above. It can comprehend and
complete each step individually but has no understanding of the overall purpose of the program, the
relationships between the steps, or the ways in which these relationships ensure that the program
will accomplish its overall purpose. The author of a program, on the other hand, must understand
its overall purpose and ensure that the steps specified will accomplish this purpose.

Instructions like this are important enough to deserve a name. We call a set of instructions
designed to accomplish some specific purpose even when followed by a human or computer that has
no understanding of their purpose an algorithm.

3

There are situations where specifying an algorithm that accomplishes some purpose can actually
be useful rather than merely amusing. To illustrate this, consider the standard procedure called
long division. A sample of the application of the long division procedure to compute the quotient
13042144/32 is shown below:

32

407567)
13042144
128

242
224

181
160

214
192

224
224

0

Although you may be rusty at it by now, you were taught the algorithm for long division
sometime in elementary school. The person teaching you might have tried to help you understand
why the procedure works, but ultimately you were probably simply taught to perform the process
by rote. After doing enough practice problems, most people reach a point where they can perform
long division but can’t even precisely describe the rules they are following, let alone explain why
they work. Again, this process was designed so that a human can perform the steps without
understanding exactly why they work. Here, the motivation is not to surprise anyone. The value of
the division algorithm is that it enables people to perform division without having to devote their
mental energies to thinking about why the process works.

Finally, to demonstrate that algorithms don’t always have to involve arithmetic, let’s consider
another example where the motivation for designing the instructions is to provide a pleasant surprise.
Well before you learned the long division algorithm, you were probably occasionally entertained by
the process of completing a connect-the-dots drawing like the one shown in Figure 1.1. Go ahead!
It’s your book. Connect the dots and complete the picture.

A connect-the-dots drawing is basically a set of instructions that enable you to draw a picture
without understanding what it is you are actually drawing. Just as it wasn’t clear that the arithmetic
you were told to perform in our first example would lead you to think of elephants, it is not obvious
looking at Figure 1.1 that you are looking at instructions for drawing an elephant. Nevertheless,
by following the instructions “Connect the dots” you will do just that (even if you never saw an
elephant before).

This example illustrates a truth of which all potential programmers should be aware. It is harder
to devise an algorithm to accomplish a given goal than it is to simply accomplish the goal. The goal
of the connect-the-dots puzzle shown in Figure 1.1 is to draw an elephant. In order to construct
this puzzle, you first have to learn to draw an elephant without the help of the dots. Only after you
have figured out how to draw an elephant in the first place will you be able to figure out where
to place the dots and how to number them. Worse yet, figuring out how to place and number the
dots so the desired picture can be drawn without ever having to lift your pencil from the paper
can be tricky. If all you really wanted in the first place was a picture of an elephant, it would be

4

Figure 1.1: Connect dots 1 through 82 (©2000 Monkeying Around)

5

easier to draw one yourself. Similarly, if you have a division problem to solve (and you don’t have
a calculator handy) it is easier to do the division yourself than to try to teach the long division
algorithm to someone who doesn’t already know it so that they can solve the problem for you.

As you learn to program, you will see this pattern repeated frequently. Learning to convert
your own knowledge of how to perform a task into a set of instructions so precise that they can
be followed by a computer can be quite challenging. Developing this ability, however, is the key
to learning how to program. Fortunately, you will find that as you acquire the ability to turn an
informal understanding of how to solve a class of problems into a precise algorithm, you will be
developing mental skills you will find valuable in many other areas.

1.2 The Grace Programming Language

An algorithm starts as an idea in one person’s mind. To become effective, it must be communicated
to other people or to a computer. Communicating an algorithm requires the use of a language. A
program is just an algorithm expressed in a language that a computer can comprehend.

The choice of the language in which an algorithm is expressed is important. The numeric
calculation puzzle that led you to think of Danish elephants was expressed in English. If our
instructions had been written in Danish, most readers of this text would not understand them.

The use of language in a connect-the-dots puzzle may not be quite as obvious. Note, however,
that we could easily replace the numbers shown with numbers expressed using the roman numerals
I, II, III, IV, ... LXXXII. Most of you probably understand Roman numerals, so you would still
be able to complete the puzzle. You would probably have difficulty, however, if we switched to
something more ancient like the numeric system used by the Babylonians or to something more
modern like the binary system that most computers use internally, in which the first few dots would
be labeled 1, 10, 11, 100, 101, and 110.

The use of language in the connect-the-dots example is interesting from our point of view
because the language used is quite simple. Human languages like English and Japanese are very
complex. It would be very difficult to build a computer that could understand a complete human
language. Instead, computers are designed to interpret instructions written in simpler languages
designed specifically for expressing algorithms intended for computers. Computer languages are
much more expressive than a system for writing numbers like the Roman numerals, but much
simpler in structure than human languages.

One consequence of the relative simplicity of computer languages is that it is possible to write a
program to translate instructions written in one computer language into another computer language.
These programs are called compilers. The internal circuitry of a computer usually can only interpret
commands written in a single language. The existence of compilers, however, makes it possible to
write programs for a single machine using many different languages. Suppose that you have to work
with a computer that can understand instructions written in language A but you want to write a
program for the machine in language B. All you have to do is find (or write) a program written in
language A that can translate instructions written in language B into equivalent instructions in
language A. This program would be called a compiler for B. You can then write your programs in
language B and use the compiler for B to translate the programs you write into language A so the
computer can comprehend the instructions.

Each computer language has its own advantages and disadvantages. Some are simpler than
others. This makes it easier to construct compilers that process programs written in these languages.

6

At the same time, a language that is simple can limit the way you can express yourself, making it
more difficult to describe an algorithm. Think again about the process of constructing the elephant
connect-the-dot puzzle. It is easier to draw an elephant if you let yourself use curved lines than if
you restrict yourself to straight lines. To describe an elephant in the language of connect-the-dot
puzzles, however, you have to find a way to use only straight lines. On the other hand, a language
that is too complex can be difficult to learn and use.

In this text, we will teach you how to use a language named Grace to write programs. Grace is a
new language that was designed to be used in teaching novices how to program in an object-oriented
style, a style that we feel provides the best introduction to modern programming practices.

Other approaches to programming use programming languages like Java and Python. Java is a
very popular object-oriented programming language, but it is designed for professional programmers.
As a result it has many bells and whistles that are irrelevant for novice programmers, but that make
the language fairly complex. These features are required in even relatively simple programs, making
it a real challenge to introduce Java in a rational way to novice programmers. The original version
of this book used Java, but the language complexities required us to focus more on the language
idiosyncrasies than we would have hoped.

Python is another language that has become more popular for teaching novices. It is simpler
than Java, but has its own idiosyncrasies. In particular, its support for object-oriented programming
is missing some of the key features (e.g., information hiding) that is key to writing good programs.

Each of these language is also showing its age. Java was first released by Sun Microsystems
in 1995, nearly 20 years before this book was published. Python is even older, with the first code
released to the internet in 1991, and version 1.0 of the language released in 1994.

Twenty years later, we believe that Grace is a superior language for learning to program. Because
it was designed for novices, the language designers have at each stage of development tried to keep
the language as simple as possible, introducing new features only where necessary, and avoiding
features that unnecessarily complicate the language.

Our approach to programming includes an emphasis on what is known as event-driven program-
ming . In this approach, programs are designed to react to events generated by the user or system.
The programs that you are used to using on computers use the event-driven approach. You do
something – press the mouse on a button, select an item from a menu, etc. – and the computer
reacts to the “event” generated by that action. In the early days of computing, programs were
started with a collection of data all provided at once and then run to completion. Most text books
still teach that approach to programming. In this text we take the more intuitive event-driven
approach to programming. As a result, you will be able to create programs more like the ones you
use every day.

1.3 Your First Encounter with Grace

The task of learning any new language can be broken down into at least two parts: studying the
language’s rules of grammar and learning its vocabulary. This is true whether the language is a
foreign language, such as French or Japanese, or a computer programming language, such as Grace.
In the case of a programming language, the vocabulary you must learn consists primarily of verbs
that can be used to command the computer to do things like “show the number 47.2 on the screen”
or “move the image of the game piece to the center of the window.” The grammatical structures
of a computer language enable you to form phrases that instruct the computer to perform several

7

primitive commands in sequence or to choose among several primitive commands based on a user
input.

When learning a new human language, one undertakes the tasks of learning vocabulary and
grammar simultaneously. One must know at least a little vocabulary before one can understand
examples of grammatical structure. On the other hand, developing an extensive vocabulary without
any knowledge of the grammar used to combine words would just be silly. The same applies
to learning a programming language. Accordingly, we will begin your introduction to Grace by
presenting a few sample programs that illustrate fundamentals of the grammatical structure of
Grace programs using only enough vocabulary to enable us to produce some interesting examples.

1.3.1 Programming Tools

Writing a program isn’t enough. You also have to get the program into your computer and convince
your computer to follow the instructions it contains.

A computer program like the one shown in the preceding section is just a fragment of text. You
already know ways to get other forms of textual information into a computer. You use a word
processor to write papers. When entering the body of an email message you use an email application
like Apple Mail or Outlook, or you use a web-based mail program like gmail. Just as there are
computer applications designed to allow you to enter these forms of text, there are applications
designed to enable you to enter the text of a program.

Entering the text of your program is only the first step. As explained earlier, unless you write
your program in the language that the machine’s circuits were designed to interpret, you need to
use a compiler to translate your instructions into a language the machine can comprehend. Finally,
after this translation is complete you still need to somehow tell the computer to treat the file(s)
created by the translation process as instructions and to follow them.

Typically, the support needed to accomplish all three of these steps is incorporated into a single
application called an integrated development environment or IDE. It is also possible to provide
separate applications to support each step. Which approach you use will likely depend on the
facilities available to you and the inclination of the instructor teaching you to program. There are
too many possibilities for us to attempt to cover them all in this text. To provide you with a simple
way of running Grace programs, however, we will sketch how you can write and execute Grace
programs using a web browser.

Take your favorite web browser (e.g., Safari, Chrome, Firefox, Internet Explorer, etc.) and go to
the page with URL http://homepages.ecs.vuw.ac.nz/∼mwh/minigrace/js/. You should get a page
that looks roughly like that shown in Figure 1.2

If a page like this does not appear, you may have set your browser to block Javascript, the
language that the web application is written in. If you have problems go to the preferences for your
browser to see how to turn Javascript on again, if you have it turned off.

The web page comes up with a simple one-line Grace program in the editor pane in the upper
left quadrant of the window.

print "hello"

When you click on the green . symbol in the upper left corner of the window, the program in the
editor pane will be compiled and executed. Try it! This should result in the string “hello” (without
the double quotes) being printed in the pane just to the right of the editor pane.

8

http://homepages.ecs.vuw.ac.nz/~mwh/minigrace/js/

Figure 1.2: A Web Page to Run Grace Programs

9

Congratulations, you have executed your first Grace program! Next, let’s modify the program
to make it more personal. Click in the edit pane to get the cursor to appear right after the ”o” in
”hello”, but before the double quote. Add a comma character, a space and your name. Make sure
they are all inside the double quotes. For example, if your name was Jilan, the program would read

print "hello, Jilan"

Now add a new line after the first in the edit pane:

print "This is your first Grace program!"

Again, click on the green . symbol to execute the program. Assuming that you haven’t made any
typos, the program should print out:

hello, Jilan

This is your first Grace program!

Of course programs that just print out a greeting are not very interesting. In the next section
we’ll look at programs that can draw images in a window.

1.3.2 Methods & Definitions

A method is a named sequence of program instructions. Thus methods allow the programmer to
specify names for operations that you may wish to use repeatedly. A simple example is the following
greeting method

method greet(name) {
print "Hello there, {name}"

}
When this is executed with a string replacing name, it will print a greeting. Thus executing

greet("Alessandro") will print out the string “Hello there, Alessandro” in the output pane.

————————————————————————————————

As you might guess from the example, surrounding an item inside a string literal by
curly braces causes the material inside to be evaluated, and then inserted at that point
in the string. If we had not surrounded name by curly braces, the method execution
would have printed “Hello there, name”, not at all what we wanted!

————————————————————————————————

On the other hand, if we instead wrote greet("Beau"), the the string “Hello there, Beau” would
be printed instead. The identifier name in the method header (the line starting with the word
method is said to be a parameter of the method. It represents a value that can be supplied for each
execution of the method. You can see that name is mentioned in the next line, where it is inserted
after “Hello there,” and the result printed.

Notice that neither occurrence of name is surrounded by quotes. That is because name is an
identifier that represents a string. When the system is executing greet("Alessandro"), the value
of name will be the string “Alessandro”.

Thus methods give us a way of defining operations that can be executed with different values.
You should already be familiar with similar operations in mathematics. For example, we could also
define a method to square numbers:

10

method square(value) {
value ∗ value

}

print "The results of squaring 7 is {square(7)}."

Figure 1.3: Program to calculate the square of 7

method square(value) {
value ∗ value

}
When this method is provided with a number, it will return the square of that number (in

computer science we usually use the symbol “*” to represent multiplication). Thus square(7) evaluates
to 49.

We can use this method in a larger program as shown in figure 1.3. That program will print in
the output

The result of squaring 7 is 49.

The curly braces in the print statement above are doing a bit more work than we have seen
in the previously. Numbers and strings are different and incompatible in Grace. In general, an
expression surrounded by curly braces inside a string literal is first evaluated, then converted to
a string, and then inserted into the containing string. Thus, in the example above, square(7) is
evaluated to the number 49, then converted to the string “49”, and then finally inserted into the
string literal just before the final period.

Of course methods can be composed of more than one command
method betterGreeting(toName,fromName) {

print "Hello there, {name}!"

print "My name is {fromName}."

}
If we evaluate betterGreeting ("Luis","Zelda"), the following will be printed:

Hello there, Luis!

My name is Zelda.

It is often useful to be able to name values in Grace. For example, the following definition
associates the name pi with the value 3.14159.

def pi = 3.14159

Once defined in a program, we can use that name in other expressions
method area(radius) {

pi∗radius∗radius
}
The ability to name things is critically important in programming. (As it is in real life. Imagine

if everything needed to be specified by giving a complete description!) Any value in Grace can be
associated with a name via a def declaration.

FIX! IAdd something about indenting properlyJ

FIX! INEED TO PUT THE FOLLOWING SOMEWHERE!!J

11

————————————————————————————————

You may have noticed that sometimes we put parentheses around the material to be
printed in a print statement, and sometimes we don’t. You are always safe in putting
in the parentheses. However, if you are printing out a single string literal (a string
surrounded by double quotes) then the parentheses may be omitted, as the computer
can use the double quotes to determine where the material to print starts and ends.

————————————————————————————————

1.3.3 Objects

Not surprisingly, object-oriented programming is all about objects. Objects provide a way of
encapsulating (putting together) data and operations (methods) on that data. Let’s see how we can
do this in Grace.

Grace provides an “object” expression to create objects. The object expression can contain
definitions of methods as well as data associated with the object.
def firstPerson = object {

def myName = "Shezad"

def myAge = 21
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}
This object definition associates the identifier firstPerson with an object that contains def-

initions and methods representing an individual with name "Shezad", who is 21 years old. The
identifiers myName and myAge are specified in def statements within the object expression.

We can send a method request to an object by writing the object followed by a period, followed
by the method name and any associated parameters.
firstPerson . greet("Jilan’’)

Executing the above will print out

Hello there, Jilan. My name is Shezad.

Of course, we may (and generally do) define many objects in a program. For example, we could
also create objects representing a second person and a dog.
def secondPerson = object {

def myName = "Charles"

def myAge = 24
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}

def dog = object {
def myName = "Rover"

def myAge = 7
def spayed = true
method speak {

print "bark"

12

}
method spin(n) {

print "{myName} spins {n} times on command"

}
}

The object associated with secondPerson has the same overall features (definitions and methods)
as firstPerson, but the values associated with the identifiers myName and myAge are different.
Because of that, if we evaluate
firstPerson . greet("Jilan’’)

The program will print out

Hello there, Jilan. My name is Charles.

Our dog also has definitions for myName and myAge, but it also has a field that indicates whether
or not it has been spayed. Notice the value associated with spayed is not surrounded by quotes,
because it is not a string. It is a built-in value, true. You won’t be surprised to learn there is
another built-in value, false. These two are said to be Boolean values. They are the only two
Boolean values. We’ll see later that these values are quite important in guiding program executions.

The dog also has two methods, speak and spin. The first takes no parameters, while the second
takes a single parameter n representing the number of times dog should spin on command.

The point here is that some objects are similar to each other in that they have the same defined
fields and methods, while others can be quite different.

1.3.4 Classes

In the last section we defined objects firstPerson and secondPerson that had exactly the same
defined fields and method. They differed only by the values of the myName and myAge fields.

When we have a need for a number of objects with similar structures, we can define a method
to generate those new objects. For example, look at the method makePerson below
method makePersonWithName(nameVal)age(ageVal) {

object {
def myName = nameVal
def myAge = ageVal
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}
}

def firstPerson = makePersonWithName("Shezad")age(21)
def secondPerson = makePersonWithName("Charles")age(24)

As you can see, we could define both firstPerson and secondPerson directly from the method.

WORRY: IShould I have put this method in an object to make it more comparable?J

Because the need to define similar objects is so common, we introduce new, somewhat simpler
notation for this. Classes are compact ways of generating objects that have the same structure.
The class declaration, as shown below, is very similar to constructs found in other object-oriented
languages like Java, C#, and C++.

13

class aPerson.name(nameVal)age(ageVal) {
def myName = nameVal
def myAge = ageVal
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}

def firstPerson = aPerson.name("Shezad")age(21)
def secondPerson = aPerson.name("Charles")age(24)

The above is a bit more compact than the method makePersonWithName()age() as we don’t
have to put in the object expression, as that is implicitly there in classes as they are always used
to create objects. In this course we will tend to favor using classes to create new objects.

FIX! IExplain defs in objects are private, only methods can be invokedJ

1.4 Generating Graphics with Objectdraw

Over the years, we (and many others!) have found that computer graphics is an excellent medium
for teaching novices. First, the results are more interesting than just printing out lines of text as
answers. Perhaps more importantly though, when the output of your program is an image (or
perhaps even an animated image), it is easy to see when your program has errors, and the broken
images can lead you to understand where you have made mistakes.

Our purpose in this course is not to make you an expert graphics programmer (though some of
you may go on to become that). Instead we will use graphics as a tool to help you learn to program.

We begin in the next section to understand how coordinate systems work in computer graphics,
and then quickly move on to show you how to create interactive programs using the objectdraw
graphics library.

1.4.1 The Graphics Coordinate System

Programs that display graphics on a computer screen have to deal extensively with a coordinate
system similar to that you have used when plotting functions in math classes. This is not evident
to users of these programs. A user of a program that displays graphics can typically specify the
position or size of a graphical object using the mouse to indicate screen positions without ever
thinking in terms of x and y coordinates. Writing a program to draw such graphics, however, is
very different from using one. When your program runs, someone else controls the mouse. Just
imagine how you would describe a position on the screen to another person if you were not allowed
to point with your finger. You would have to say something like “two inches from the left edge of
the screen and three inches down from the top of the screen.” Similarly, when writing programs
you will specify positions on the screen using pairs of numbers to describe the coordinates of each
position.

The coordinate system used for computer graphics is like the Cartesian coordinate systems
studied in math classes but with one big difference. The y axis in the coordinate system used in
computer graphics is upside down. Thus, while your experience in algebra class might lead you to
expect the point (2,3) to appear below the point (2,5), on a computer screen just the opposite is
true. This difference is illustrated by Figure 1.4, which shows where these two points fall in the

14

Figure 1.4: Comparison of computer and Cartesian coordinate systems

normal Cartesian coordinate system and in the coordinate system used to specify positions when
drawing on a computer screen.

Our Grace programs that use graphics will draw items in a window that contains a canvas. We’ll
talk in more detail later about the canvas, but for now, just think of it as something like a painter’s
canvas. In our beginning programs the canvas will fill the entire window, though later we will see
how to put other components in the window along with the canvas.

An object representing a location on the canvas can be constructed using a term of the form
aLocation.at(x,y) where x and y are the x and y coordinates of the point. Thus the location
corresponding to (2,3) can be constructed using aLocation.at(2,3). Our constructors for geometric
objects will use locations to specify where on the canvas they will appear.

Displaying text on a canvas is more complicated than just writing it to the program out-
put area because we must specify where the item should be written. The objectdraw library
allows a programmer to place a string on the canvas using an object constructor of the form
aText.at(someLocation)with(someString)on(someCanvas), where the italicized words are re-
placed with the actual information about what we want to display and where it goes.

The graphics that appear on a computer screen are actually composed of tiny squares of different
colors called pixels. For example, if you looked at the text displayed by our first program with a
magnifying glass you would discover it is actually made up of little squares as shown in Figure 1.5.
The entire screen is organized as a grid of pixels. The coordinate system used to place graphics
in a window is designed to match this grid of pixels in that the basic unit of measurement in the
coordinate system is the size of a single pixel. So, the coordinates (30,50) describe the point that is
30 pixels to the right and 50 pixels down from the origin.

Another important aspect of the way in which coordinates are used to specify where graphics
should appear is that there is not just a single set of coordinate axes used to describe locations
anywhere on the computer’s screen. Instead, there is a separate set of axes associated with each
window on the screen and, in some cases, even several pairs of axes for different parts of a single

15

Figure 1.5: Text enlarged to make pixels visible

window.

Rather than complicating the programmer’s job, the presence of so many coordinate systems
makes it simpler. Many programs may be running on a computer at once and each should only
produce output in certain portions of the screen. If you are running Microsoft Word at the same
time as a web browser, you would not expect text from your Word document to appear in one of
the browser’s windows. To make this as simple as possible, each program’s drawing commands
must specify the window or other screen area in which the drawing should take place. Then the
coordinates used in these commands are interpreted using a separate coordinate system associated
with that area of the screen. The origin of each of these coordinate systems is located in the upper
left corner of the area in which the drawing is taking place rather than in the corner of the machine’s
physical display. This makes it possible for a program to produce graphical output without being
aware of the location of its window relative to the screen boundaries or the locations of other
windows.

In many cases, the area in which a program can draw graphics corresponds to the entire interior
of a window on the computer’s display. In other cases, however, the region used by a program may
be just a subsection of a window or there may be several independent drawing areas within a given
window. Accordingly, we refer to a program’s drawing area as a canvas rather than as a window.

1.4.2 A simple example

We will use the Grace program “TouchyWindow” given in Figure 1.6 to illustrate the basic concepts
in our objectdraw graphics library. When the program is run, a window will pop up with the
text “Click in this window” in the upper left. When the mouse button is depressed, the text “I’m
touched” will appear in the middle of the window. When the mouse button is released, that text
will disappear.

Let’s walk through the code and see what each section does.

Dialect

The first line of the program specified the “dialect” of Grace that we are using for the program.
Dialects are used to restrict the constructs available in the language or to add new features. The
dialect objectdrawDialect is a dialect that provides commands for creating programs that draw
and change items on the canvas. The new constructs explained in this section are all from the

16

dialect "objectdrawDialect"

// program that responds to a mouse press with a simple textual display
object {

inherits aGraphicApplication . size (400,400)

def clickTextLocation = aLocation.at(20,20)

aText.at(clickTextLocation) with ("Click in this window") on (canvas)

// When the user presses mouse, write: I’m touched
// on canvas at coordinates (180,200)
method onMousePress(mousePoint){

aText.at(aLocation.at(180,200))with ("I’m touched") on (canvas)
}

// When mouse is released, erase the canvas
method onMouseRelease(mousePoint){

canvas. clear
}

// create window and start graphics
startGraphics

}

Figure 1.6: TouchyWindow program in Grace

17

objectdraw dialect of Grace. This dialect will make it much easier for us to write graphics programs
in Grace.

inherits aGraphicApplication

Inheritance is used to bring in features to an object that have previously been defined in other
objects. This program inherits features from aGraphicApplication.

When your program creates an object inheriting from aGraphicApplication, it will pop up a
new window with a canvas pre-installed for drawing on. Thus virtually all of our programs using
graphics will create one or more objects inheriting from aGraphicApplication.

Objects inheriting from aGraphicApplication will also be prepared to respond to mouse events
if the programmer includes the right methods in the object. For example, this program includes
the methods onMousePress and onMouseRelease. These methods are special in objects inheriting
from aGraphicApplication, as they will be requested by the system whenever the user presses or
releases the mouse.

————————————————————————————————

The mouse event-handling method name must be spelled exactly as given here and there
must be an identifier in parentheses after the method name. We’ll talk later about the
role played by that identifier.

————————————————————————————————

The parameters after size indicate the size of the window. In the case of this example, the window
will be 400 pixels wide by 400 pixels tall. If we instead wrote aGraphicApplication.size(800,200)
then the window would be twice the width and half the height.

Coordinates in Grace

In interpreting your graphic commands, Grace will assume that the origin of the coordinate system
is located at the upper left corner of the canvas in which you are drawing. The location of the
coordinate axes that would be used to interpret the coordinates specified in our TouchyWindow

example are shown in Figure 1.7. FIX! IImage in in figure is not correct.J

Notice that the coordinates of the upper left hand corner of this window are (0,0). The window
shown is 400 pixels wide and 400 pixels high. Thus the coordinates of the lower right corner are
(400, 400). The “I’m touched”text is positioned so that it falls in a rectangle whose upper left corner
has an x coordinate of 180 and a y coordinate of 200.

The computer will not consider it an error if you try to draw beyond the boundaries of your
program’s canvas. It will remember everything you have drawn and show you just the portion of
these drawings that fall within the boundaries of your canvas.

1.4.3 Constructing Graphic Objects

As explained earlier, a text item is displayed on the canvas when the following expression is evaluated.
def clickTextLocation = aLocation.at(20,20)
aText.at(clickTextLocation) with ("Click in this window") on (canvas)

18

Figure 1.7: A program window and its drawing coordinate axes

In this case it will appear at aLocation.at(20,20)). That is, the x and y coordinates will both be
20. It will display “Click in this window” on the default canvas for graphics applications).

There is a second statement creating text in this program. It is in the method named
onMousePress. We talk about when this command is executed in the next subsection.

1.4.4 Methods

The two methods in this program are named onMousePress and onMouseRelease. They are special
methods that are associated with graphics applications. Not surprisingly, the system requests the
first method when the user presses the mouse button down, and the second one when the mouse
button is released. The mousePoint parameter in parentheses after each method name represents
the location on the canvas where the mouse was pointing when it was pressed or released. It is not
used in this program, but must be included anyway. We will talk about it in more detail later when
it does get used.

As explained earlier, the code enclosed in curly brackets after the method name is executed when
the method is requested by the system. Thus when the mouse button is pressed, a new text item
stating “I’m touched” is displayed at x coordinate 180 and y coordinate 200 on the canvas. Similarly,
when the mouse button is released, the canvas is cleared, as executing the command canvas.clear

sends a request to the canvas to execute its clear method, which just erases everything on the
canvas.

In general, the programmer is free to choose any appropriate name for a method. The method
name can then be used in other parts of the program to cause the computer to obey the instructions
within the methods body. Within a class that extends aGraphicApplication, however, certain
method names have special significance. In particular, if such a class contains a method which is
named onMousePress then the instructions in that methods body will be followed by the computer
when the mouse is depressed within the programs window. That is why this particular program
reacts to a mouse press as it does.

19

Exercise 1.4.1 Rewrite the line of code in onMousePress of program TouchyWindow so that it
now displays the message “Hello” 60 pixels to the right and 80 pixels down from the top left corner
of the window.

1.4.5 startGraphics

The final line in the object definition is startGraphics. When this command is executed, the
window is displayed with whatever graphics have been created on the canvas to this point.

In the TouchyWindow example, when the program is run, the text with “Click in this window”
will be displayed when startGraphics is executed. The code in the method onMousePress and
onMouseRelease will not be executed until the system requests those method – which will happen
when the user presses or releases the mouse button.

1.5 Creating other graphics items

Now that we have seen what a simple graphics program looks like, let’s see how we can construct
other graphics items on a canvas.

In each case we will need to supply the location where it will be drawn, information about
the other attributes of the item (e.g., width and height) and the canvas it will be drawn on. For
example, for a text item, we provided its location, the text to be displayed, and then canvas it
should be drawn on.

To display a line we use the construction aLine.from(start)to(end)on(canvas) where start
and end are locations giving the end points of the line, and canvas is the convas on which it is
drawn.

Thus we can draw a line between the upper left and lower right corners of a canvas whose
dimensions are 200 by 300, you would write:

aLine.from(aLocation.at (0,0))to(aLocation.at(200,300))on(canvas)

The line produced would look like the line shown in the window in Figure 1.8.

Similarly, to draw a line from the middle of the window, which has the coordinates (100,150), to
the upper right corner, whose coordinates are (200,0), you would write:

aLine.from(aLocation.at(100, 150)to(aLine.at(200, 0) on (canvas)

Such a line is shown in Figure 1.9.

Using combinations of these construction statements, we could replace the single instruction in
the body of the onMousePress method shown above with one or more other instructions. Such a
modified program is shown in Figure 1.10.

The only differences between this example and TouchyWindow are that no text is written on the
screen when this object is executed, and the commands in method onMousePress result in drawing
two crossed lines when the button is pressed. The drawing produced is also shown in the figure.

There are several other forms of graphics you can display on the screen. The command:
aFramedRect.at(aLocation.at(20, 50) size (80, 40)on(canvas)

will display the outline, or perimeter, of an 80 by 40 rectangular box in your canvas. The pair 20,
50 specifies the coordinates of the box’s upper left corner. The pair 80, 40 specifies the width and
height of the box. If you replace the name FramedRect by FilledRect to produce the construction

aFilledRect .at(aLocation.at(20, 50) size (80, 40)on(canvas)

the result will instead be an 80 by 40 solid black rectangular box.

20

Figure 1.8: Drawing of a single line

Figure 1.9: A line from (100,150) to (200,0)

21

dialect "objectdrawDialect"

// program that responds to a mouse press with a cross
object {

inherits aGraphicApplication . size (400,400)

// When the user presses mouse, draw a cross on canvas
method onMousePress(mousePoint){

aLine.from(aLocation.at(40,40))to(aLocation.at(60,60)) on (canvas)
aLine.from(aLocation.at(60,40))to(aLocation.at(40,60)) on (canvas)

}

// When mouse is released, erase the canvas
method onMouseRelease(mousePoint){

canvas. clear
}

// create window and start graphics
startGraphics

}

Figure 1.10: A program that draws two crossed lines.

The command:
aFilledOval .at(aLocation.at(20, 50) size (80, 40)on(canvas)

will draw a filled oval on the screen. The parameters are interpreted just like those to the FilledRect
construction. Instead of drawing a rectangle, however, FilledOval draws the largest ellipse that it
can fit within the rectangle described by its parameters. To illustrate this, Figure 1.11 shows what
the screen would contain after executing the two constructions

aFramedRect.at(aLocation.at(20, 50) size (80, 40)on(canvas)
aFilledOval .at(aLocation.at(20, 50) size (80, 40)on(canvas)

The upper left corner of the rectangle shown is at the point with coordinates (20, 50). Both shapes
are 80 pixels wide and 40 pixels high. You can create a framed oval by replacing aFilledOval by
aFramedOval in the above command.

Other primitives allow you to draw additional shapes and to display image files in your canvas.
A full listing and description of the available graphic object types and the forms of the commands
used to construct them can be found in Appendix ?? For now, the graphical object generators
aText, aLine, aFramedRect, aFilledRect, aFramedOval, and aFilledOval will provide enough

22

Figure 1.11: A FilledOval nested within a FramedRect

flexibility for our purposes.

Exercise 1.5.1 Sketch the picture that would be produced if the following constructions were executed.
You should assume that the canvas associated with the program containing these instructions is 200
pixels wide and 200 pixels high.

aLine.from(aLocation.at(0,100))to(aLocation.at(100, 0) on (canvas)
aLine.from(aLocation.at(200,100))to(aLocation.at(100,200) on (canvas)
aLine.from(aLocation.at(100,200))to(aLocation.at(0,100) on (canvas)
aFramedRect.at(aLocation.at(50,50)) size (100, 100) on (canvas)

Exercise 1.5.2 Write a sequence of Line and/or FramedRect constructions that would produce
each of the drawings shown below. In both examples, assume that the drawing will appear in a 200
by 200 pixel window. For the drawing of the three dimensional cube, there should be a space 5 pixels
wide between the cube and the edges of the window in those areas where the cube comes closest to the
edges. The rectangle drawn for the front face of the cube should be 155 pixels wide and 155 pixels
high. The two visible edges of the rear of the cube should also be 155 pixels long.

a) b)

1.6 Additional Event Handling Methods

In our examples thus far, we have used the two method names onMousePress and onMouseRelease

to establish a correspondence between certain user actions and instructions we would like the

23

computer to follow when these actions occur. In this section, we introduce several other method
names that can be used to associate instructions with other user actions.

1.6.1 Mouse Event Handling Methods

In addition to onMousePress and onMouseRelease, there are five other method names that have
special significance for handling mouse events. If you include definitions for any of these methods
within a class that inherits aGraphicApplication, then the instructions within the methods you
include will be executed when the associated events occur.

The definitions of all these methods have the same form. You have seen that the header for the
onMousePress method looks like:

method onMousePress(point)

The headers for the other methods are identical except that onMousePress is replaced by the
appropriate method name.

All of the mouse event handling methods are described below:

onMousePress specifies the actions the computer should perform when the mouse button is
depressed.

onMouseRelease specifies the actions the computer should perform when the mouse button is
released.

onMouseClick specifies the actions the computer should perform if the mouse is pressed and then
quickly released without significant mouse movement between the two events. The actions
specified in this method will be performed in addition to (and after) any instructions in
onMousePress and onMouseRelease.

onMouseEnter specifies the actions the computer should perform when the mouse enters the
program’s canvas.

onMouseExit specifies the actions the computer should perform when the mouse leaves the
program’s canvas.

onMouseMove specifies the actions the computer should perform periodically while the mouse is
being moved about without its button depressed.

onMouseDrag specifies the actions the computer should perform periodically while the mouse is
being moved about with its button depressed.

Exercise 1.6.1 Write the complete method header for the onMouseMove method.

Exercise 1.6.2 Write a method that draws a filled square on the canvas when the mouse enters
the canvas. The square should be 100×100 pixels with the upper left corner at the origin.

Exercise 1.6.3 Write a complete program that will display “I’m inside” when the mouse is inside
the program’s window and “I’m outside” when the mouse is outside the window. The screen should
be blank when the program first begins to execute and should stay blank until the mouse is moved in
or out of the window.

24

1.6.2 The Initialization code

Code in an object definition that is not included in a method body is executed when the object is
evaluated. In graphics applications this code is generally responsible for creating the initial image
presented on the canvas and doing any other initialization necessary before the user begins interacting
with the program. Typically the last line in an object inheriting from aGraphicApplication will
be startGraphics, which displays the window and readies it to respond to user actions.

1.7 To Err is Human

We all make mistakes. Worse yet, we often make the same mistakes over and over again.
If we make a mistake while giving instructions to another person, the other person can frequently

figure out what we really meant. For example, if you give someone driving directions and say “turn
left” somewhere you should have said “turn right” chances are that they will realize after driving
in the wrong direction for a while that they are not seeing any of the landmarks the remaining
instructions mention, go back to the last turn before things stopped making sense and try turning
in the other direction. Our ability to deal with such incorrect instructions, however, depends on
our ability to understand the intent of the instructions we follow. Computers, unfortunately, never
really understand the instructions they are given so they are far less capable of dealing with errors.

There are several distinct types of errors you can make while writing or entering a program.
The computer will respond differently depending on the type of mistake you make. The first type of
mistake is called a syntax error. The defining feature of a syntax error is that the IDE can detect
that there is a problem before you try to run your program. As we have explained, a computer
program must be written in a specially designed language that the computer can interpret or at
least translate into a language which it can interpret. Computer languages have rules of grammar
just like human languages. If you violate these rules, either because you misunderstand them or
simply because you make a typing mistake, the computer will recognize that something is wrong
and tell you that it needs to be corrected.

The mechanisms used to inform the programmer of syntactic errors vary from one IDE to
another. The web IDE for Grace examines the text you have entered and indicates fragments of
your program that it has identified as errors by displaying an error icon (a red “x”) on the offending
line at the left margin. If you point the mouse at the the error icon, the IDE will display a message
explaining the nature of the problem. For example, If we accidentally left out the closing “}” after
the body of the onMousePress method while entering the program shown in Figure ??, the IDE
would place a red “x” on the last line of the method. Pointing the mouse at the underlined semicolon
would cause the IDE to display the message “syntax error, a method must end with ’}” as shown in
Figure 1.12. FIX! IFix the figureJ

The bad news is that your IDE will not always provide you with a message that pinpoints your
mistake so clearly. When you make a mistake, your IDE is forced to try to guess what you meant
to type. As we have emphasized earlier, your computer really cannot be expected to understand
what your program is intended to do or say. Given its limited understanding, it will often mistake
your intention and display error messages that reveal its confusion. For example, if you type FIX!

INeed appropriate Grace error with obscure message to replace example below.J

canvas.clear;

instead of

25

Figure 1.12: Eclipse displaying a syntax error message

canvas.clear();

in the body of the onMouseRelease method of our example program, the IDE will print something
stupid. In such cases, the error message is more likely to be a hindrance than a help. You will just
have to examine what you typed before and after the position where the IDE identified the error
and use your knowledge of the Java language to identify your mistake.

A program that is free from syntax errors is not necessarily a correct program. Think back to
our instructions for performing calculations that was designed to leave you thinking about Danish
elephants. If while typing these instructions we completely omitted a line, the instructions would
still be grammatically correct. Following them, however, would no longer lead you to think of
Danish elephants. The same is true for the example of saying “left” when you meant to say “right”
while giving driving directions. Mistakes like these are not syntactic errors; they are instead called
logic errors. They result in an algorithm that doesn’t achieve the result that its author intended.
Unfortunately, to realize such a mistake has been made, you often have to understand the intended
purpose of the algorithm. This is exactly what computers don’t understand. As a result, your IDE
will give you relatively little help correcting logic errors.

As a simple example of a logical error, suppose that while typing the onMouseRelease method for
the TouchyWindow program you got confused and typed onMouseExit instead of onMouseRelease.
The result would still be a perfectly legitimate program. It just wouldn’t be the program you meant
to write. Your IDE would not identify your mistake as a syntax error. Instead, when you ran the
program it just would not do what you expected. When you released the mouse, the “I’m Touched”
message would not disappear as expected.

This may appear to be an unlikely error, but there is a very common error which is quite similar
to it. Suppose instead of typing the name onMouseRelease you typed the name onMooseRelease.

26

Look carefully. These names are not the same. onMooseRelase is not the name of one of the special
event handling methods discussed in the preceding sections. In more advanced programs, however,
we will learn that it is sometimes useful to define additional methods that do things other than
handle events. The programmer is free to choose names for such methods. onMooseRelease would
be a legitimate (if strange) name for such a method. That is, a program containing a method with
this name has to be treated as a syntactically valid program by any Grace IDE. As a result, your
IDE would not recognize this as a typing mistake, but when you ran the program Grace would
think you had decided not to associate any instructions with mouse release events. As before, the
text “I’m Touched” would never be removed from the canvas.

There are many other examples of logical errors a programmer can make. Even in a simple
program like TouchyWindow, mistyping screen coordinates can lead to surprises. If you mistyped an
x coordinate as in

aText.at(aLocation.at(400,50))with("I’m Touched")on(canvas)

the text would be positioned outside the visible region of the program window. It would seem as if
it never appeared. If the line

canvas.clear

had been placed in the onMousePress method with the line to construct the message, the message
would disappear so quickly that it would never be seen.

Of course, in larger programs the possibilities for making such errors just increases. You will
find that careful, patient, thoughtful examination of your code as you write it and after errors are
detected is essential.

1.8 Summary

Programming a computer to say “I’m Touched.” is obviously a rather modest achievement. In the
process of discussing this simple program, however, we have explored many of the principles and
practices that will be developed throughout this book. We have learned that computer programs are
just collections of instructions. These instructions, however, are special in that they can be followed
mechanically, without understanding their actual purpose. This is the notion of an algorithm, a
set of instructions that can be followed to accomplish a task without understanding the task itself.
We have seen that programs are produced by devising algorithms and then expressing them in a
language which a computer can interpret. We have learned the rudiments of the language we will
explore further throughout this text, Grace. We have also explored some of the tools used to enter
computer programs, translate them into a form the machine can follow, and run them.

Despite our best efforts to explain how these tools interact, there is nothing that can take the
place of actually writing, entering and running a program. We strongly urge you to do so before
proceeding to read the next chapter. Throughout the process of learning to program you will
discover that it is a skill that is best learned by practice. Now is a good time to start.

27

	What is Programming Anyway?
	Without Understanding
	The Grace Programming Language
	Your First Encounter with Grace
	Programming Tools
	Methods & Definitions
	Objects
	Classes

	Generating Graphics with Objectdraw
	The Graphics Coordinate System
	A simple example
	Constructing Graphic Objects
	Methods
	startGraphics

	Creating other graphics items
	Additional Event Handling Methods
	Mouse Event Handling Methods
	The Initialization code

	To Err is Human
	Summary

