
Programming with Grace

Draft of May 16, 2014

Programming with Grace

Kim B. Bruce
Pomona College

DRAFT!

DO NOT DISTRIBUTE WITHOUT PRIOR PERMISSION

Website: http://eventfuljava.cs.williams.edu

Printed on May 16, 2014

©2014 Kim B. Bruce1

Comments, corrections, and other feedback appreciated

kim@cs.pomona.edu

1This book is partially based on Java:An eventful approach by Kim B. Bruce, Andrea Pohoreckyj Danyluk, and
Thomas P. Murtagh, ©2006 by Pearson Education

iv

Contents

1 What is Programming Anyway? 1

1.1 Without Understanding . 2

1.2 The Grace Programming Language . 6

1.3 Your First Encounter with Grace . 7

1.3.1 Programming Tools . 8

1.3.2 Methods & Definitions . 10

1.3.3 Objects . 12

1.3.4 Classes . 13

1.3.5 Program Layout . 14

1.4 Generating Graphics with Objectdraw . 14

1.4.1 The Graphics Coordinate System . 15

1.4.2 A simple example . 17

1.4.3 Constructing Graphic Objects . 19

1.4.4 Methods . 19

1.4.5 startGraphics . 20

1.5 Creating other graphics items . 20

1.6 Additional Event Handling Methods . 24

1.6.1 Mouse Event Handling Methods . 24

1.6.2 The Initialization code . 25

1.7 To Err is Human . 26

1.8 Summary . 28

2 What’s in a name? 29

2.1 Naming and Modifying Objects . 29

2.1.1 Mutator Methods . 29

2.1.2 Definitions . 31

2.1.3 Variable Declarations . 33

2.1.4 Comments . 34

2.1.5 Additional Mutator Methods . 35

2.1.6 Exercises . 36

2.2 Non-graphical Classes of Objects . 39

2.2.1 The Class of Colors . 39

2.2.2 The Location Class . 42

2.3 Layering on the Canvas . 43

2.4 Accessing the Location of the Mouse . 46

v

2.5 Sharing Parameter Information between Methods . 47
2.6 Summary . 53

3 Working with Numbers 55
3.1 Writing numbers . 55
3.2 Introduction to Accessor Methods . 55
3.3 Accessing the Size of the Canvas . 58
3.4 Expressions and Statements . 59
3.5 Arithmetic Expressions . 61

3.5.1 Ordering of Arithmetic Operations . 63
3.6 Numeric Instance Variables . 65
3.7 Displaying Numeric Information . 67

3.7.1 Displaying Numbers as text . 67
3.7.2 Using print . 69
3.7.3 Mixing Text and Numbers . 71

3.8 Random numbers . 72
3.9 Summary . 75

4 Making Choices 77
4.1 A Brief Example: Using the if Statement to Count Votes 77
4.2 The if Statement . 80

4.2.1 Example: Using the if Statement with 2-D Objects 82
4.3 Understanding Conditions . 83

4.3.1 Using Boolean Values . 84
4.4 Selecting Among Many Alternatives . 87
4.5 More on Boolean Expressions . 89
4.6 Nested Conditionals . 93
4.7 Summary . 97
4.8 Chapter Review Problems . 97
4.9 Programming Problems . 100

5 Types, Numbers, and Strings 103
5.1 What is a type? . 103
5.2 Types from objectdraw . 103
5.3 Using type annotations . 105
5.4 Numbers . 109

5.4.1 The math module . 110
5.5 Handy Sources of Numeric Information . 110

5.5.1 Time flies . 110
5.5.2 Sines and Wonders . 111

5.6 Strings . 114
5.7 Chapter Review Problems . 117
5.8 Programming Problems . 117

vi

List of Figures

1.1 Connect dots 1 through 82 (©2000 Monkeying Around) 5

1.2 A Web Page to Run Grace Programs . 9

1.3 Program to calculate the square of 7 . 11

1.4 Comparison of computer and Cartesian coordinate systems 15

1.5 Text enlarged to make pixels visible . 16

1.6 TouchyWindow program in Grace . 17

1.7 A program window and its drawing coordinate axes 18

1.8 Drawing of a single line . 21

1.9 A line from (100,150) to (200,0) . 21

1.10 A program that draws two crossed lines. 22

1.11 A FilledOval nested within a FramedRect . 23

1.12 Eclipse displaying a syntax error message . 27

2.1 An oval rises over the horizon . 31

2.2 Declaring sun in the RisingSun program . 32

2.3 Commented code for rising sun example . 34

2.4 Rising sun program with reset feature . 37

2.5 An application of the translate method . 42

2.6 Display after one click . 43

2.7 Display after second click . 44

2.8 Display after many clicks . 44

2.9 Today’s forecast: Partly cloudy . 45

2.10 Tonight’s forecast: Partly sunny? . 46

2.11 Using a different parameter name . 48

2.12 A program to record mouse button changes . 48

2.13 Connecting the ends of a mouse motion . 49

2.14 A Program to track mouse actions . 50

2.15 Scribbing with a computer’s mouse . 51

2.16 A simple sketching program . 53

3.1 Program to make the sun scroll with the mouse . 57

3.2 Drawing produced by the DrawGrid program . 57

3.3 The sun rises over the horizon . 61

3.4 Program to make the sun scroll with the mouse . 62

3.5 Drawing desired for Exercise 3.5.1 . 64

3.6 Using a numeric instance variable . 66

vii

3.7 A computer counting program before the first click 68
3.8 A simple counting program. 69
3.9 Counting in the Grace console . 70
3.10 Counting using the Grace console . 71
3.11 Sample message drawn by dice simulation program 73
3.12 Simulating the rolling of a pair of dice . 74

4.1 Screen shot of Voter program. 78
4.2 Code for Voter program. 79
4.3 Semantics of the if−else statement. 81
4.4 Code to display individual and total vote counts . 81
4.5 Semantics of the if with no else . 82
4.6 Code for dragging a box. 85
4.7 Three stages of dragging a rectangle. 86
4.8 Voting for four candidates. 90
4.9 A summary of the boolean and comparison operators in Grace 92
4.10 Craps program illustrating nested conditionals. 96
4.11 Display for InvisibleBox . 100
4.12 Display for Dicey . 101

5.1 The type Graphic from objectdraw . 106
5.2 The type Text from the objectdraw library . 107
5.3 The type Line from the objectdraw library . 107
5.4 The type Graphic2D from the objectdraw library . 107
5.5 The Craps program with full type annotations . 108
5.6 Grace program to measure mouse click duration. 111
5.7 Sample output of the ClickTimer program . 112
5.8 A program to display Morse code as dots and dashes 115
5.9 Sample of Morse code program display . 116
5.10 Display for DNAGenerator . 118

viii

Chapter 1

What is Programming Anyway?

Most of the machines that have been developed to improve our lives serve a single purpose. Just try
to drive to the store in your washing machine or vacuum the living room with your car and this
becomes quite clear. Your computer, by contrast, serves many functions. In the office or library,
you may find it invaluable as a word processor. Once you get home, connect to a media site on
the internet and your computer takes on the role of a television. Start up Skype, FaceTime, or a
Google Hangup and you have a videophone. Launch an mp3 player and you suddenly have a music
system. This, of course, is just a short sample of the functions a typical personal computer can
perform. Clearly, the computer is a very flexible device.

While the computer’s ability to switch from one role to another is itself amazing, it is even more
startling that these transformations occur without making major physical changes to the machine.
Every computer system includes both hardware, the physical circuitry of which the machine is
constructed, and software, the programs that determine how the machine will behave. Everything
described above can be accomplished by changing the software used without changing the machine’s
actual circuitry in any way. In fact, the changes that occur when you switch to a new program
are often greater than those you achieve by changing a computer’s hardware. If you install more
memory or a faster network card, the computer will still do pretty much the same things it did
before but a bit faster (hopefully!). On the other hand, by downloading a new application program
through your web browser, you can make it possible for your computer to perform completely new
functions.

Software clearly plays a central role in the amazing success of computer technology. Very few
computer users, however, have a clear understanding of what software really is. This book provides
an introduction to the design and construction of computer software in the programming language
Grace. By learning to program in Grace, you will acquire a useful skill that will enable you to
construct software of your own and to learn other languages that are used in industry. More
importantly, you will gain a clear understanding of what a program really is and how it is possible
to radically change the behavior of a computer by constructing a new program.

A program is a set of instructions that a computer follows. We can therefore learn a good bit
about computer programs by examining the ways in which instructions written for humans resemble
and differ from computer programs. In this chapter we will consider several examples of instructions
for humans in order to provide you with a rudimentary understanding of the nature of a computer
program. We will then build on this understanding by presenting a very simple but complete
example of a computer program written in Grace. Like instructions for humans, the instructions

1

that make up a computer program must be communicated to the computer in a language that it
comprehends. Grace is such a language. We will discuss the mechanics of actually communicating
the text of a Grace program to a computer so that it can follow the instructions contained in
the program. Finally, you have undoubtedly already discovered that programs don’t always do
what you expect them do to. When someone else’s program misbehaves, you can complain. When
this happens with a program you wrote yourself, you will have to figure out how to change the
instructions to eliminate the problem. To prepare you for this task, we will conclude this chapter by
identifying several categories of errors that can be made when writing a program.

1.1 Without Understanding

You have certainly had the experience of following instructions of one sort or another. Electronic
devices from computers to cameras come with thick manuals of instructions. Forms, whether they
be tax forms or the answer sheet for an SAT exam, come with instructions explaining how they
should be completed. You can undoubtedly easily think of many other examples of instructions you
have had to follow.

If you have had to follow instructions, it is likely that you have also complained about the quality
of the instructions. The most common complaint is probably that the instructions take too long to
read. This, however, may have more to do with our impatience than the quality of the instructions.
A more serious complaint is that instructions are often unclear and hard to understand.

It seems obvious that a set of instructions is more likely to be followed correctly if they are
easy to understand. This “obvious” fact, however, does not generalize to the types of instructions
that make up computer programs. A computer is just a machine. Understanding is something
humans do, but not something machines do. How can a computer understand the instructions in a
computer program? The simple answer is that it cannot. As a result, the instructions that make up
a computer program have to satisfy a very challenging requirement. It must be possible to follow
the individual instructions correctly without actually understanding their overall purpose.

This may seem like a preposterous idea. How can you follow instructions if you don’t understand
them? Fortunately, there are a few examples of instructions for humans that are deliberately
designed so that they can be followed without understanding. Examining such instructions will give
you a bit of insight into how a computer must follow the instructions in a computer program.

First, consider the “mathematical puzzle” described below. To appreciate this example, don’t
just read the instructions. Follow them as you read them.

1. Pick a number between 1 and 40.

2. Subtract 20 from the number you picked.

3. Multiply by 3.

4. Square the result.

5. Add up the individual digits of the result.

6. If the sum of the digits is even, divide by 2.

7. If the result is less than 5 add 5, otherwise subtract 4.

2

8. Multiply by 2.

9. Subtract 6.

10. Find the letter whose position in the alphabet is equal to the number you have obtained (a=1,
b=2, c=3, etc.)

11. Think of a country whose name begins with this letter.

12. Think of a large mammal whose name begins with the second letter of the country’s name.

You have probably seen puzzles like this before. The whole point of such puzzles is that you are
supposed to be surprised that it is possible to predict the final result produced even though you are
allowed to make random choices at some points in the process. In particular, this puzzle is designed
to leave you thinking about elephants. Were you thinking about an elephant when you finished?
Are you surprised we could predict this?

The underlying reason for such surprise is that the instructions are designed to be followed
without being understood. The person following the instructions thinks that the choices they get to
make in the process (choosing a number or choosing any country whose name begins with “D”),
could lead to many different results. A person who understands the instructions realizes this is an
illusion.

To understand why almost everyone who follows the instructions above will end up thinking
about elephants, you have to identify a number of properties of the operations performed. The
steps that tell you to multiply by 3 and square the result ensure that after these steps the number
you are working with will be a multiple of nine. When you add up the digits of any number that is
a multiple of nine, the sum will also be a multiple of nine. Furthermore, the fact that your initial
number was relatively small (less than 40), implies that the multiple of nine you end up with is
also relatively small. In fact, the only possible values you can get when you sum the digits are 0, 9
and 18. The next three steps are designed to turn any of these three values into a 4 leading you
to the letter “D”. The last step is the only point in these instructions where something could go
wrong. The person following them actually has a choice at this point. There are four countries on
Earth whose names begin with “D”: Denmark, Djibouti, Dominica and the Dominican Republic.
Luckily, for most readers of this text, Denmark is more likely to come to mind than any of the
other three countries (even though the Dominican Republic is actually larger in both land mass and
population).

This example should make it clear that it is possible to follow instructions without understanding
how they work. It is equally clear that it is not possible to write instructions like those above without
understanding how they work. This contrast provides an important insight into the relationship
between a computer, a computer program and the author of the program. A computer follows the
instructions in a program the way you followed the instructions above. It can comprehend and
complete each step individually but has no understanding of the overall purpose of the program, the
relationships between the steps, or the ways in which these relationships ensure that the program
will accomplish its overall purpose. The author of a program, on the other hand, must understand
its overall purpose and ensure that the steps specified will accomplish this purpose.

Instructions like this are important enough to deserve a name. We call a set of instructions
designed to accomplish some specific purpose even when followed by a human or computer that has
no understanding of their purpose an algorithm.

3

There are situations where specifying an algorithm that accomplishes some purpose can actually
be useful rather than merely amusing. To illustrate this, consider the standard procedure called
long division. A sample of the application of the long division procedure to compute the quotient
13042144/32 is shown below:

32

407567)
13042144
128

242
224

181
160

214
192

224
224

0

Although you may be rusty at it by now, you were taught the algorithm for long division
sometime in elementary school. The person teaching you might have tried to help you understand
why the procedure works, but ultimately you were probably simply taught to perform the process
by rote. After doing enough practice problems, most people reach a point where they can perform
long division but can’t even precisely describe the rules they are following, let alone explain why
they work. Again, this process was designed so that a human can perform the steps without
understanding exactly why they work. Here, the motivation is not to surprise anyone. The value of
the division algorithm is that it enables people to perform division without having to devote their
mental energies to thinking about why the process works.

Finally, to demonstrate that algorithms don’t always have to involve arithmetic, let’s consider
another example where the motivation for designing the instructions is to provide a pleasant surprise.
Well before you learned the long division algorithm, you were probably occasionally entertained by
the process of completing a connect-the-dots drawing like the one shown in Figure 1.1. Go ahead!
It’s your book. Connect the dots and complete the picture.

A connect-the-dots drawing is basically a set of instructions that enable you to draw a picture
without understanding what it is you are actually drawing. Just as it wasn’t clear that the arithmetic
you were told to perform in our first example would lead you to think of elephants, it is not obvious
looking at Figure 1.1 that you are looking at instructions for drawing an elephant. Nevertheless,
by following the instructions “Connect the dots” you will do just that (even if you never saw an
elephant before).

This example illustrates a truth of which all potential programmers should be aware. It is harder
to devise an algorithm to accomplish a given goal than it is to simply accomplish the goal. The goal
of the connect-the-dots puzzle shown in Figure 1.1 is to draw an elephant. In order to construct
this puzzle, you first have to learn to draw an elephant without the help of the dots. Only after you
have figured out how to draw an elephant in the first place will you be able to figure out where
to place the dots and how to number them. Worse yet, figuring out how to place and number the
dots so the desired picture can be drawn without ever having to lift your pencil from the paper
can be tricky. If all you really wanted in the first place was a picture of an elephant, it would be

4

Figure 1.1: Connect dots 1 through 82 (©2000 Monkeying Around)

5

easier to draw one yourself. Similarly, if you have a division problem to solve (and you don’t have
a calculator handy) it is easier to do the division yourself than to try to teach the long division
algorithm to someone who doesn’t already know it so that they can solve the problem for you.

As you learn to program, you will see this pattern repeated frequently. Learning to convert
your own knowledge of how to perform a task into a set of instructions so precise that they can
be followed by a computer can be quite challenging. Developing this ability, however, is the key
to learning how to program. Fortunately, you will find that as you acquire the ability to turn an
informal understanding of how to solve a class of problems into a precise algorithm, you will be
developing mental skills you will find valuable in many other areas.

1.2 The Grace Programming Language

An algorithm starts as an idea in one person’s mind. To become effective, it must be communicated
to other people or to a computer. Communicating an algorithm requires the use of a language. A
program is just an algorithm expressed in a language that a computer can comprehend.

The choice of the language in which an algorithm is expressed is important. The numeric
calculation puzzle that led you to think of Danish elephants was expressed in English. If our
instructions had been written in Danish, most readers of this text would not understand them.

The use of language in a connect-the-dots puzzle may not be quite as obvious. Note, however,
that we could easily replace the numbers shown with numbers expressed using the roman numerals
I, II, III, IV, ... LXXXII. Most of you probably understand Roman numerals, so you would still
be able to complete the puzzle. You would probably have difficulty, however, if we switched to
something more ancient like the numeric system used by the Babylonians or to something more
modern like the binary system that most computers use internally, in which the first few dots would
be labeled 1, 10, 11, 100, 101, and 110.

The use of language in the connect-the-dots example is interesting from our point of view
because the language used is quite simple. Human languages like English and Japanese are very
complex. It would be very difficult to build a computer that could understand a complete human
language. Instead, computers are designed to interpret instructions written in simpler languages
designed specifically for expressing algorithms intended for computers. Computer languages are
much more expressive than a system for writing numbers like the Roman numerals, but much
simpler in structure than human languages.

One consequence of the relative simplicity of computer languages is that it is possible to write a
program to translate instructions written in one computer language into another computer language.
These programs are called compilers. The internal circuitry of a computer usually can only interpret
commands written in a single language. The existence of compilers, however, makes it possible to
write programs for a single machine using many different languages. Suppose that you have to work
with a computer that can understand instructions written in language A but you want to write a
program for the machine in language B. All you have to do is find (or write) a program written in
language A that can translate instructions written in language B into equivalent instructions in
language A. This program would be called a compiler for B. You can then write your programs in
language B and use the compiler for B to translate the programs you write into language A so the
computer can comprehend the instructions.

Each computer language has its own advantages and disadvantages. Some are simpler than
others. This makes it easier to construct compilers that process programs written in these languages.

6

At the same time, a language that is simple can limit the way you can express yourself, making it
more difficult to describe an algorithm. Think again about the process of constructing the elephant
connect-the-dot puzzle. It is easier to draw an elephant if you let yourself use curved lines than if
you restrict yourself to straight lines. To describe an elephant in the language of connect-the-dot
puzzles, however, you have to find a way to use only straight lines. On the other hand, a language
that is too complex can be difficult to learn and use.

In this text, we will teach you how to use a language named Grace to write programs. Grace is a
new language that was designed to be used in teaching novices how to program in an object-oriented
style, a style that we feel provides the best introduction to modern programming practices.

Other approaches to programming use programming languages like Java and Python. Java is a
very popular object-oriented programming language, but it is designed for professional programmers.
As a result it has many bells and whistles that are irrelevant for novice programmers, but that make
the language fairly complex. These features are required in even relatively simple programs, making
it a real challenge to introduce Java in a rational way to novice programmers. The original version
of this book used Java, but the language complexities required us to focus more on the language
idiosyncrasies than we would have hoped.

Python is another language that has become more popular for teaching novices. It is simpler
than Java, but has its own idiosyncrasies. In particular, its support for object-oriented programming
is missing some of the key features (e.g., information hiding) that is key to writing good programs.

Each of these language is also showing its age. Java was first released by Sun Microsystems
in 1995, nearly 20 years before this book was published. Python is even older, with the first code
released to the internet in 1991, and version 1.0 of the language released in 1994.

Twenty years later, we believe that Grace is a superior language for learning to program. Because
it was designed for novices, the language designers have at each stage of development tried to keep
the language as simple as possible, introducing new features only where necessary, and avoiding
features that unnecessarily complicate the language.

Our approach to programming includes an emphasis on what is known as event-driven program-
ming . In this approach, programs are designed to react to events generated by the user or system.
The programs that you are used to using on computers use the event-driven approach. You do
something – press the mouse on a button, select an item from a menu, etc. – and the computer
reacts to the “event” generated by that action. In the early days of computing, programs were
started with a collection of data all provided at once and then run to completion. Most text books
still teach that approach to programming. In this text we take the more intuitive event-driven
approach to programming. As a result, you will be able to create programs more like the ones you
use every day.

1.3 Your First Encounter with Grace

The task of learning any new language can be broken down into at least two parts: studying the
language’s rules of grammar and learning its vocabulary. This is true whether the language is a
foreign language, such as French or Japanese, or a computer programming language, such as Grace.
In the case of a programming language, the vocabulary you must learn consists primarily of verbs
that can be used to command the computer to do things like “show the number 47.2 on the screen”
or “move the image of the game piece to the center of the window.” The grammatical structures
of a computer language enable you to form phrases that instruct the computer to perform several

7

primitive commands in sequence or to choose among several primitive commands based on a user
input.

When learning a new human language, one undertakes the tasks of learning vocabulary and
grammar simultaneously. One must know at least a little vocabulary before one can understand
examples of grammatical structure. On the other hand, developing an extensive vocabulary without
any knowledge of the grammar used to combine words would just be silly. The same applies
to learning a programming language. Accordingly, we will begin your introduction to Grace by
presenting a few sample programs that illustrate fundamentals of the grammatical structure of
Grace programs using only enough vocabulary to enable us to produce some interesting examples.

1.3.1 Programming Tools

FIX! IWill need to modify when fix environment.J
Writing a program isn’t enough. You also have to get the program into your computer and

convince your computer to follow the instructions it contains.
A computer program is just a fragment of text. You already know ways to get other forms of

textual information into a computer. You use a word processor to write papers. When entering the
body of an email message you use an email application like Apple Mail or Outlook, or you use a
web-based mail program like Gmail. Just as there are computer applications designed to allow you
to enter these forms of text, there are applications designed to enable you to enter the text of a
program.

Entering the text of your program is only the first step. As explained earlier, unless you write
your program in the language that the machine’s circuits were designed to interpret, you need to
use a compiler to translate your instructions into a language the machine can comprehend. Finally,
after this translation is complete you still need to somehow tell the computer to treat the file(s)
created by the translation process as instructions and to follow them.

Typically, the support needed to accomplish all three of these steps is incorporated into a single
application called an integrated development environment or IDE. It is also possible to provide
separate applications to support each step. Which approach you use will likely depend on the
facilities available to you and the inclination of the instructor teaching you to program. There are
too many possibilities for us to attempt to cover them all in this text. To provide you with a simple
way of running Grace programs, however, we will sketch how you can write and execute Grace
programs using a web browser.

Take your favorite web browser (e.g., Safari, Chrome, Firefox, Internet Explorer, etc.) and go to
the page with URL http://homepages.ecs.vuw.ac.nz/∼mwh/minigrace/js/. You should get a page
that looks roughly like that shown in Figure 1.2

If a page like this does not appear, you may have set your browser to block Javascript, the
language that the web application is written in. If you have problems, go to the preferences for your
browser to see how to turn Javascript on again, if you have it turned off.

The web page should come up with a simple one-line Grace program in the editor pane in the
upper left quadrant of the window.

print "hello"

When you click on the green . symbol in the upper left corner of the window, the program in the
editor pane will be compiled and executed. Try it! This should result in the string “hello” (without
the double quotes) being printed in the pane just to the right of the editor pane.

8

http://homepages.ecs.vuw.ac.nz/~mwh/minigrace/js/

Figure 1.2: A Web Page to Run Grace Programs

9

Congratulations, you have executed your first Grace program! Next, let’s modify the program
to make it more personal. Click in the edit pane to get the cursor to appear right after the ”o” in
”hello”, but before the double quote. Add a comma character, a space and your name. Make sure
they are all inside the double quotes. For example, if your name was Jilan, the program would read

print "hello, Jilan"

Now add a new line after the first in the edit pane:

print "This is your first Grace program!"

Again, click on the green . symbol to execute the program. Assuming that you haven’t made any
typos, the program should print out:

hello, Jilan

This is your first Grace program!

Of course programs that just print out a greeting are not very interesting. In the next section
we’ll look at programs that can draw images in a window.

1.3.2 Methods & Definitions

A method is a named sequence of program instructions. Thus methods allow the programmer to
specify names for operations that you may wish to use repeatedly. A simple example is the following
greeting method

method greet(name) {
print "Hello there, {name}"

}
When this method is requested with a string replacing name, it will print a greeting. Thus

executing greet("Alessandro") will print out the string “Hello there, Alessandro” in the output
pane.

————————————————————————————————

As you might guess from the example, surrounding an item inside a string literal by
curly braces causes the material inside to be evaluated, and then inserted at that point
in the string. If we had not surrounded name by curly braces, the method execution
would have printed “Hello there, name”, not at all what we wanted!

————————————————————————————————

On the other hand, if we instead wrote greet("Beau"), the the string “Hello there, Beau” would
be printed instead. The identifier name in the method header (the line starting with the word
method) is said to be a parameter of the method. It represents a value that can be supplied for each
execution of the method. You can see that name is mentioned in the next line, where it is inserted
after “Hello there,” and the result printed.

Notice that neither occurrence of name is surrounded by quotes. That is because name is an
identifier that represents a string. When the system is executing greet("Alessandro"), the value
of name will be the string “Alessandro”.

10

method square(value) {
value ∗ value

}

print "The results of squaring 7 is {square(7)}."

Figure 1.3: Program to calculate the square of 7

Thus methods give us a way of defining operations that can be executed with different values.
You should already be familiar with similar operations in mathematics. For example, we could also
define a method to square numbers:

method square(value) {
value ∗ value

}
When this method is provided with a number, it will return the square of that number (in

computer science we usually use the symbol “*” to represent multiplication). Thus square(7) evaluates
to 49.

We can use this method in a larger program as shown in figure 1.3. That program will print in
the output

The result of squaring 7 is 49.

The curly braces in the print statement above are doing a bit more work than we have seen
previously. Numbers and strings are different and incompatible in Grace. In general, an expression
surrounded by curly braces inside a string literal is first evaluated, then converted to a string, and
then inserted into the containing string. Thus, in the example above, square(7) is evaluated to the
number 49, then converted to the string “49”, and then finally inserted into the string literal just
before the final period.

Of course methods can be composed of more than one command
method betterGreeting(toName,fromName) {

print "Hello there, {toName}!"

print "My name is {fromName}."

}
When a method is requested, the code enclosed in braces is executed. Thus, if we evaluate
betterGreeting ("Luis","Zelda"), the following will be printed:

Hello there, Luis!

My name is Zelda.

By the way, you will notice that when you see betterGreeting ("Luis","Zelda") it is not obvious
which parameter represents the greeter and which the greetee. We can improve things by giving a
slightly better name to the method and separating the parameters:

method bestGreetingTo(toName)from(fromName) {
print "Hello there, {toName}!"

print "My name is {fromName}."

}
Now when we write bestGreetingTo("Luis")from("Zelda") it is much clearer who is being greeted

(”Luis”) and who is the greeter (”Zelda”). Whenever it seems helpful for understanding, we will
separate the parameters with words in this way, rather than just separating them with commas.

11

It is often useful to be able to associate names to values in Grace. For example, the following
definition associates the name pi with the value 3.14159.

def pi = 3.14159

Once defined in a program, we can use that name in other expressions
method area(radius) {

pi∗radius∗radius
}
The ability to name things is critically important in programming. (As it is in real life. Imagine

if everything needed to be specified by giving a complete description!) Any value in Grace can be
associated with a name via a def declaration.

FIX! INEED TO PUT THE FOLLOWING SOMEWHERE!!J

————————————————————————————————

You may have noticed that sometimes we put parentheses around the material to be
printed in a print statement, and sometimes we don’t. You are always safe in putting
in the parentheses. However, if you are printing out a single string literal (a string
surrounded by double quotes) then the parentheses may be omitted, as the computer
can use the double quotes to determine where the material to print starts and ends.

————————————————————————————————

1.3.3 Objects

Not surprisingly, object-oriented programming is all about objects. Objects provide a way of
encapsulating (grouping together) data and operations (methods) on that data. Let’s see how we
can do this in Grace.

Grace provides an “object” expression to create objects. The object expression can contain
definitions of methods as well as data associated with the object.

def firstPerson = object {
def myName = "Shezad"

def myAge = 21
method greet(name) {

print "Hello there, {name}. My name is {myName}."

}
}
This object definition associates the identifier firstPerson with an object that contains def-

initions and methods representing an individual with name "Shezad", who is 21 years old. The
identifiers myName and myAge are specified in def statements within the object expression.

We can send a method request to an object by writing the object followed by a period, followed
by the method name and any associated parameters: firstPerson . greet("Jilan").

Executing the above will print out

Hello there, Jilan. My name is Shezad.

Of course, we may (and generally do) define many objects in a program. For example, we could
also create objects representing a second person and a dog.

12

def secondPerson = object {
def myName = "Charles"

def myAge = 24
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}

def dog = object {
def myName = "Rover"

def myAge = 7
def spayed = true
method speak {

print "bark"

}
method spin(n) {

print "{myName} spins {n} times on command"

}
}

The object associated with secondPerson has the same overall features (definitions and methods)
as firstPerson, but the values associated with the identifiers myName and myAge are different.
Because of that, if we evaluate secondPerson.greet("Jilan’’)

The program will print out

Hello there, Jilan. My name is Charles.

Our dog also has definitions for myName and myAge, but it also has a field that indicates whether
or not it has been spayed. Notice the value associated with spayed is not surrounded by quotes,
because it is not a string. It is a built-in value, true. You won’t be surprised to learn there is
another built-in value, false. These two are said to be Boolean values. They are the only two
Boolean values. We’ll see later that these values are quite important in guiding program executions.

The dog also has two methods, speak and spin. The first takes no parameters, while the second
takes a single parameter n representing the number of times dog should spin on command.

The point here is that some objects are similar to each other in that they have the same defined
fields and methods, while others can be quite different.

1.3.4 Classes

In the last section we defined objects firstPerson and secondPerson that had exactly the same
defined fields and method. They differed only by the values of the myName and myAge fields.

When we have a need for a number of objects with similar structures, we can define a class to
generate those new objects. For example, look at the class makePerson below

class aPerson.name(nameVal)age(ageVal) {
def myName = nameVal
def myAge = ageVal
method greet(name) {

print ("Hello there, {name}. My name is {myName}.")
}

}

13

def firstPerson = aPerson.name("Shezad")age(21)
def secondPerson = aPerson.name("Charles")age(24)

As you can see, we could define both firstPerson and secondPerson directly from the method.
Because of the parameters provided, firstPerson has name ”Shezad” and age 21 (as before), while
secondPerson has name ”Charles” and age 24 (again, just as before).

It would be possible to write this instead as a method that returns an object. However, both for
simplicity and because most object-oriented languages support classes like this, we will use the class
construct in this text.

1.3.5 Program Layout

You may have noticed that we have been very careful in the indenting of our programs. Grace will
insist that your program be laid out very consistently, as this will help you understand how pieces
of a Grace program fit together.

All the items that are declared in an object should start at the same indentation, as in the
examples above. Code in a method should start a few spaces in from the method header (the line
starting with the word ”method”), and all subsequent lines in the method should be at the same
indentation. The closing curly bracket is generally put at the same indentation as the method
header. Occasionally in this text we will put the closing curly bracket at the end of the last line of
the method if we are pressed for space on the page, but we encourage you to always put it on a new
line.

Lines that are continuations of a previous line should always be indented by a few more characters
so the compiler knows it is a a continuation. Otherwise it will interpret it as a new command and
get confused. For example, suppose you write

def x = 13
−7

This will result in x having the value of 13. While if instead you wrote
def x = 13
−7

then x will have the value 13-7 or 6, as it will assume that the -7 is a continuation of the previous line.
In the case where the -7 was not indented, the system interpreted -7 as starting a new command,
even though it doesn’t make much sense.

We strongly recommend that you avoid using the tab key in laying out your program. Some
editors can be set so that tabs are automatically replaced by a fixed number of spaces. However,
any tabs in your program text will cause an error in Grace programs.

FIX! IExplain defs in objects are private, only methods can be invokedJ

1.4 Generating Graphics with Objectdraw

Over the years, we (and many others!) have found that computer graphics is an excellent medium
for teaching novice programmers. The results are more interesting than just printing out lines of
text as answers. Perhaps more importantly though, when the output of your program is an image
(or perhaps even an animated image), it is easy to see when your program has errors, and the broken
images can lead you to understand where you have made mistakes.

Our purpose in this course is not to make you an expert graphics programmer (though some of
you may go on to become that). Instead we will use graphics as a tool to help you learn to program.

14

Figure 1.4: Comparison of computer and Cartesian coordinate systems

We begin in the next section to understand how coordinate systems work in computer graphics,
and then quickly move on to show you how to create interactive programs using the objectdraw
graphics library.

1.4.1 The Graphics Coordinate System

Programs that display graphics on a computer screen have to deal extensively with a coordinate
system similar to that you have used when plotting functions in math classes. This is not evident
to users of these programs. A user of a program that displays graphics can typically specify the
position or size of a graphical object using the mouse to indicate screen positions without ever
thinking in terms of x and y coordinates. Writing a program to draw such graphics, however, is
very different from using one. When your program runs, someone else controls the mouse. Just
imagine how you would describe a position on the screen to another person if you were not allowed
to point with your finger. You would have to say something like “two inches from the left edge of
the screen and three inches down from the top of the screen.” Similarly, when writing programs
you will specify positions on the screen using pairs of numbers to describe the coordinates of each
position.

The coordinate system used for computer graphics is like the Cartesian coordinate systems
studied in math classes but with one big difference. The y axis in the coordinate system used in
computer graphics is upside down. Thus, while your experience in algebra class might lead you to
expect the point (2,3) to appear below the point (2,5), on a computer screen just the opposite is
true. This difference is illustrated by Figure 1.4, which shows where these two points fall in the
normal Cartesian coordinate system and in the coordinate system used to specify positions when
drawing on a computer screen.

Our Grace programs that use graphics will draw items in a window that contains a canvas. We’ll
talk in more detail later about the canvas, but for now, just think of it as something like a painter’s

15

Figure 1.5: Text enlarged to make pixels visible

canvas. In our beginning programs the canvas will fill the entire window, though later we will see
how to put other components in the window along with the canvas.

An object representing a location on the canvas can be constructed using a term of the form
aLocation.at(x,y) where x and y are the x and y coordinates of the point. Thus the location
corresponding to (2,3) can be constructed using aLocation.at (2,3) . Our classes for constructing
geometric objects will use locations to specify where on the canvas they will appear.

Displaying text on a canvas is more complicated than just writing it to the program out-
put area because we must specify where the string should be written. The objectdraw library
allows a programmer to place a string on the canvas using an object constructor of the form
aText.at(someLocation)with(someString)on(someCanvas), where the italicized words are re-
placed with the actual information about what we want to display and where it goes.

The graphics that appear on a computer screen are actually composed of tiny squares of different
colors called pixels. For example, if you looked at the text displayed by our first program with a
magnifying glass you would discover it is actually made up of little squares as shown in Figure 1.5.
The entire screen is organized as a grid of pixels. The coordinate system used to place graphics
in a window is designed to match this grid of pixels in that the basic unit of measurement in the
coordinate system is the size of a single pixel. So, the coordinates (30,50) describe the point that is
30 pixels to the right and 50 pixels down from the origin.

Another important aspect of the way in which coordinates are used to specify where graphics
should appear is that there is not just a single set of coordinate axes used to describe locations
anywhere on the computer’s screen. Instead, there is a separate set of axes associated with each
window on the screen and, in some cases, even several pairs of axes for different parts of a single
window.

Rather than complicating the programmer’s job, the presence of so many coordinate systems
makes it simpler. Many programs may be running on a computer at once and each should only
produce output in certain portions of the screen. If you are running Microsoft Word at the same
time as a web browser, you would not expect text from your Word document to appear in one of
the browser’s windows. To make this as simple as possible, each program’s drawing commands
must specify the window or other screen area in which the drawing should take place. Then the
coordinates used in these commands are interpreted using a separate coordinate system associated
with that area of the screen. The origin of each of these coordinate systems is located in the upper
left corner of the area in which the drawing is taking place rather than in the corner of the machine’s

16

dialect "objectdrawDialect"

// program that responds to a mouse press with a simple textual display
object {

inherits aGraphicApplication . size (400,400)

def clickTextLocation = aLocation.at(20,20)
def touchedTextLocation = aLocation.at(180,200)

aText.at(clickTextLocation) with ("Click in this window") on (canvas)

// When the user presses mouse, write: I’m touched
// on canvas at coordinates (180,200)
method onMousePress(mousePoint){

aText.at(touchedTextLocation)with ("I’m touched") on (canvas)
}

// When mouse is released, erase the canvas
method onMouseRelease(mousePoint){

canvas. clear
}

// create window and start graphics
startGraphics

}

Figure 1.6: TouchyWindow program in Grace

physical display. This makes it possible for a program to produce graphical output without being
aware of the location of its window relative to the screen boundaries or the locations of other
windows.

In many cases, the area in which a program can draw graphics corresponds to the entire interior
of a window on the computer’s display. In other cases, however, the region used by a program may
be just a subsection of a window or there may be several independent drawing areas within a given
window. Accordingly, we refer to a program’s drawing area as a canvas rather than as a window.

1.4.2 A simple example

We will use the Grace program “TouchyWindow” given in Figure 1.6 to illustrate the basic concepts
in our objectdraw graphics library. When the program is run, a window will pop up with the
text “Click in this window” in the upper left. When the mouse button is depressed, the text “I’m
touched” will appear in the middle of the window. When the mouse button is released, that text
will disappear.

Let’s walk through the code and see what each section does.

Dialect

The first line of the program specified the “dialect” of Grace that we are using for the program.
Dialects are used to restrict the constructs available in the language or to add new features. The

17

Figure 1.7: A program window and its drawing coordinate axes

dialect objectdrawDialect is a dialect that provides commands for creating programs that draw and
modify items on the canvas. The new constructs explained in this section are all from the objectdraw
dialect of Grace. This dialect will make it much easier for us to write graphics programs in Grace.

inherits aGraphicApplication

Inheritance is used to bring in features to an object that have previously been defined in other
objects. This program inherits features from aGraphicApplication.

When your program creates an object inheriting from aGraphicApplication, it will will be capable
of popping up a new window with a canvas pre-installed for drawing on. Thus virtually all of our
programs using graphics will create one or more objects inheriting from aGraphicApplication.

Objects inheriting from aGraphicApplication will also be prepared to respond to mouse events
if the programmer includes the right methods in the object. For example, this program includes
the methods onMousePress and onMouseRelease. Methods with these names are treated specially in
objects inheriting from aGraphicApplication, as they will be requested by the system whenever the
user presses or releases the mouse (or trackpad) button.

The parameters after the word size indicate the size of the window. In the case of this example,
the window will be 400 pixels wide by 400 pixels tall. If we instead wrote aGraphicApplication . size

(800,200) then the window would be 800 pixels wide and 200 high.

Coordinates in Grace

In interpreting your graphic commands, Grace will assume that the origin of the coordinate system
is located at the upper left corner of the canvas in which you are drawing. The location of the
coordinate axes that would be used to interpret the coordinates specified in our TouchyWindow

example are shown in Figure 1.7. FIX! IImage in in figure is not correct.J
Notice that the coordinates of the upper left hand corner of this window are (0,0). The window

shown is 400 pixels wide and 400 pixels high. Thus the coordinates of the lower right corner of the

18

window are (400, 400). The canvas in the window will be a bit smaller as the scroll bar on the right
and bottom edges of the screen take up about 15 pixels each. Thus the lower right corner of the
drawing area will be at about (385,385). FIX! IFix library to make canvas given size?? Probably not.J

The “I’m touched” text is positioned so that it falls in a rectangle whose upper left corner has
an x coordinate of 180 and a y coordinate of 200.

The computer will not consider it an error if you try to draw beyond the boundaries of your
program’s canvas. However, it will only display the portion of these drawings that fall within the
boundaries of your canvas.

1.4.3 Constructing Graphic Objects

The first lines in the object expression represent the definition of two locations and the construction
of a text item on the canvas:

def clickTextLocation = aLocation.at(20,20)
def touchedTextLocation = aLocation.at(180,200)

aText.at(clickTextLocation) with ("Click in this window") on (canvas)

The identifier clickTextLocation will represent the location with x and y coordinates which are both
20. The next line defines touchedTextLocation to correspond to the location with x coordinate 180
and y coordinate 200.

Finally the identifier clickTextLocation is used in constructing a text item at that location.
Executing that object constructor will display “Click in this window” on the default canvas for
graphics applications).

There is another statement creating text in the method named onMousePress:
aText.at(touchedTextLocation)with ("I’m touched") on (canvas)

When that construction is evaluated the text “I’m touched” will be displayed starting at the location
named by touchedTextLocation.

————————————————————————————————

In this text, we will tend to use definitions as abbreviations to make code more readable.
In the above example, rather than defining clickTextLocation , we could have instead just
written the text construction as:

aText.at(aLocation.at(20,20)) with ("Click in this window") on (canvas)

However, we feel that giving the new location a name makes the code more readable.

————————————————————————————————

1.4.4 Methods

The two methods in this program are named onMousePress and onMouseRelease. They are special
methods that are associated with graphics applications. As you might guess, the system requests
the first method when the user presses the mouse button down, and the second one when the mouse
button is released. The mousePoint parameter in parentheses after each method name represents the
location on the canvas where the mouse was pointing when it was pressed or released. It is not used
in this program, but must be included anyway. We will talk about how to use it in a program later.

19

As explained earlier, the code enclosed in curly brackets after the method name is executed
when the method is requested by the system. Thus when the mouse button is pressed, a new text
item stating “I’m touched” is displayed at x coordinate 180 and y coordinate 200 on the canvas.
Similarly, when the mouse button is released, the canvas is cleared, as executing the command
canvas. clear sends a request to the canvas to execute its clear method, which just erases everything
on the canvas.

In general, the programmer is free to choose any appropriate name for a method. The method
name can then be used in other parts of the program to cause the computer to obey the instructions
within the method’s body. Within a class that extends aGraphicApplication, however, certain method
names have special significance. In particular, if such a class contains a method which is named
onMousePress then the instructions in that method’s body will be followed by the computer when
the mouse is depressed within the program’s window. That is why this particular program reacts to
a mouse press as it does.

Exercise 1.4.1 Rewrite the line of code in onMousePress of program TouchyWindow so that it now
displays the message “Hello” 60 pixels to the right and 80 pixels down from the top left corner of
the window.

1.4.5 startGraphics

The final line in the object definition is startGraphics . When the command startGraphics is executed,
a window is displayed with whatever graphics have been created on the canvas to this point.

In the TouchyWindow example, when the program is run, the text with “Click in this window” will
be displayed when startGraphics is executed. The code in the method onMousePress and onMouseRelease

will not be executed until the system requests those methods – which will happen when the user
presses or releases the mouse button.

1.5 Creating other graphics items

Now that we have seen what a simple graphics program looks like, let’s see how we can construct
other graphics items on a canvas.

In each case we will need to supply the location where we want the object to be drawn, information
about the other attributes of the item (e.g., it’s width and height) and the canvas it will be drawn
on. For example, for a text item, we provided its location, the text to be displayed, and the canvas
it should be drawn on.

To display a line we use the construction aLine.from(start)to(end)on(canvas) where start
and end are locations giving the end points of the line, and canvas is the canvas on which it is
drawn.

Thus to draw a line between the upper left and lower right corners of a canvas whose dimensions
are 200 by 300, you could write:

def upperLeft = aLocation.at(0,0)
def lowerRight = aLocation.at(200,300)
aLine.from(upperLeft)to(lowerRight)on(canvas)

The line produced would look like the line shown in the window in Figure 1.8. FIX! IAgain, the

canvas is smaller than the windowJ

20

Figure 1.8: Drawing of a single line

Figure 1.9: A line from (100,150) to (200,0)

21

Similarly, to draw a line from the middle of the window, which has the coordinates (100,150), to
the upper right corner, whose coordinates are (200,0), you would write:

def midLocation = aLocation.at(100, 150)
def upperRightCorner = aLine.at(200, 0)
aLine.from(midLocation)to(upperRightCorner) on (canvas)

Such a line is shown in Figure 1.9.

Using combinations of these construction statements, we could replace the single instruction in
the body of the onMousePress method shown in the TouchyWindow program in Figure 1.6 with one or
more other instructions. Such a modified program is shown in Figure 1.10. It draws two crossed

dialect "objectdrawDialect"

// program that responds to a mouse press with a cross
object {

inherits aGraphicApplication . size (400,400)

def upperLeft = aLocation.at(40,40)
def lowerRight = aLocation.at(60,60)
def upperRight = aLocation.at(60,40)
def lowerLeft = aLocation.at(40,60)

// When the user presses mouse, draw a cross on canvas
method onMousePress(mousePoint){

aLine.from(upperLeft)to(lowerRight) on (canvas)
aLine.from(upperRight)to(lowerLeft) on (canvas)

}

// When mouse is released, erase the canvas
method onMouseRelease(mousePoint){

canvas. clear
}

// create window and start graphics
startGraphics

}

Figure 1.10: A program that draws two crossed lines.

lines in the center of the window.

The only differences between this example and TouchyWindow are that no text is written on the

22

Figure 1.11: A FilledOval nested within a FramedRect

screen when this object is created, and the commands in method onMousePress result in drawing
two crossed lines when the button is pressed. The drawing produced is also shown in the figure.

There are several other forms of graphics you can display on the screen. The command:
def rectUpperLeft = aLocation.at(20, 50)
aFramedRect.at(rectUpperLeft) size (80, 40) on (canvas)

will display the frame, or outline, of an 80 by 40 rectangular box on the canvas. The coordinates
20, 50 is used to create the location of the box’s upper left corner, which is associated with the
identifier, rectUpperLeft. The pair 80, 40 specifies the width and height of the box. If you replace
the name FramedRect by FilledRect to produce the construction

aFilledRect .at(rectUpperLeft) size (80, 40) on (canvas)

the result will instead be an 80 by 40 solid black rectangular box.

The command:
aFilledOval .at(rectUpperLeft) size (80, 40) on (canvas)

will draw a filled oval on the screen. The parameters are interpreted just like those to the FilledRect

construction. However, instead of drawing a rectangle, FilledOval draws the largest ellipse that it
can fit within the rectangle described by its parameters. To illustrate this, Figure 1.11 shows what
the screen would contain after executing the two constructions

aFramedRect.at(rectUpperLeft)size (80, 40)on(canvas)
aFilledOval .at(rectUpperLeft) size (80, 40)on(canvas)

The upper left corner of the rectangle shown is at the point with coordinates (20, 50). Both shapes
are 80 pixels wide and 40 pixels high. You can create a framed oval by replacing aFilledOval by
aFramedOval in the above command.

Other primitives allow you to draw additional shapes and to display image files on your canvas.
A full listing and description of the available graphic object types and the forms of the commands
used to construct them can be found in Appendix ??. For now, the graphical object generators
aText, aLine, aFramedRect, aFilledRect , aFramedOval, and aFilledOval will provide enough flexibility for
our purposes.

Exercise 1.5.1 Sketch the picture that would be produced if the following constructions were executed.
You should assume that the canvas associated with the program containing these instructions is 200
pixels wide and 200 pixels high.

def loc1 = aLocation.at(0,100)
def loc2 = aLocation.at(100, 0)
def loc3 = aLocation.at(200,100)

23

def loc4 = aLocation.at(100,200)
def loc5 = aLocation.at(50,50)

aLine.from(loc1)to(loc2) on (canvas)
aLine.from(loc3)to(loc4) on (canvas)
aLine.from(loc4)to(loc1) on (canvas)
aFramedRect.at(loc5)size (100, 100) on (canvas)

Exercise 1.5.2 Write a sequence of Line and/or FramedRect constructions that would produce
each of the drawings shown below. In both examples, assume that the drawing will appear in a 200
by 200 pixel window. For the drawing of the three dimensional cube, there should be a space 5 pixels
wide between the cube and the edges of the window in those areas where the cube comes closest to the
edges. The rectangle drawn for the front face of the cube should be 155 pixels wide and 155 pixels
high. The two visible edges of the rear of the cube should also be 155 pixels long.

a) b)

1.6 Additional Event Handling Methods

In our examples thus far, we have used the two method names onMousePress and onMouseRelease to
establish a correspondence between certain user actions and instructions we would like the computer
to follow when these actions occur. In this section, we introduce several other method names that
can be used to associate instructions when the user performs an action with the mouse. When the
user performs such an action, we the system generate a mouse event that can be handled by an
object that extends aGraphicApplication.

1.6.1 Mouse Event Handling Methods

In addition to onMousePress and onMouseRelease, there are five other method names that have special
significance for handling mouse events. If you include definitions for any of these methods within a
class that inherits aGraphicApplication, then the instructions within the methods you include will be
executed when the associated events occur.

The definitions of all these methods have the same form. You have seen that the header for the
onMousePress method looks like:

24

method onMousePress(point)

The headers for the other methods are identical except that onMousePress is replaced by the
appropriate method name.

All of the mouse event handling methods are described below:

onMousePress specifies the actions the computer should perform when the mouse button is
depressed.

onMouseRelease specifies the actions the computer should perform when the mouse button is
released.

onMouseClick specifies the actions the computer should perform if the mouse is pressed and then
quickly released without significant mouse movement between the two events. The actions
specified in this method will be performed in addition to (and after) any instructions in
onMousePress and onMouseRelease.

onMouseEnter specifies the actions the computer should perform when the mouse enters the
program’s canvas.

onMouseExit specifies the actions the computer should perform when the mouse leaves the
program’s canvas.

onMouseMove specifies the actions the computer should perform periodically while the mouse is
being moved about without its button depressed.

onMouseDrag specifies the actions the computer should perform periodically while the mouse is
being moved about with its button depressed.

If your computer uses a trackpad, touch screen, or other input mechanism, the above methods
will be triggered by the equivalent actions with that input.

Exercise 1.6.1 Write the complete method header for the onMouseMove method.

Exercise 1.6.2 Write a method that draws a filled square on the canvas when the mouse enters
the canvas. The square should be 100 × 100 pixels with the upper left corner at the origin.

Exercise 1.6.3 Write a complete program that will display “I’m inside” when the mouse is inside
the program’s window and “I’m outside” when the mouse is outside the window. The screen should
be blank when the program first begins to execute and should stay blank until the mouse is moved in
or out of the window.

1.6.2 The Initialization code

Code that is inside an object expression that is not included in a method body will be executed
when the object is evaluated. In graphics applications this code is generally responsible for creating
the initial image presented on the canvas and doing any other initialization necessary before the
user begins interacting with the object or application. Typically the last line in an object inheriting
from aGraphicApplication will be startGraphics , which displays the window and readies it to respond
to user actions.

25

In our TouchyWindow program shown in Figure 1.6, the initialization code created two locations
and associated them with the names clickTextLocation and touchedTextLocation. With this information
it wrote the instructions on the canvas. Finally, the command startGraphics created the window and
made it ready to respond to mouse clicks. The code in the methods onMousePress and onMouseRelease

was only executed after a mouse press or release event.

1.7 To Err is Human

FIX! ISection needs a lot of work once we decide on the IDEJ We all make mistakes. Worse yet, we often
make the same mistakes over and over again.

If we make a mistake while giving instructions to another person, the other person can frequently
figure out what we really meant. For example, if you give someone driving directions and say “turn
left” somewhere you should have said “turn right” chances are that they will realize after driving
in the wrong direction for a while that they are not seeing any of the landmarks the remaining
instructions mention, go back to the last turn before things stopped making sense and try turning
in the other direction. Our ability to deal with such incorrect instructions, however, depends on
our ability to understand the intent of the instructions we follow. Computers, unfortunately, never
really understand the intent of the instructions they are given so they are far less capable of dealing
with errors.

There are several distinct types of errors you can make while writing or entering a program.
The computer will respond differently depending on the type of mistake you make. The first type of
mistake we discuss is called a syntax error. The defining feature of a syntax error is that the IDE
can detect that there is a problem before you try to run your program. As we have explained, a
computer program must be written in a specially designed language that the computer can interpret
or at least translate into a language which it can interpret. Computer languages have rules of
grammar just like human languages. If you violate these rules, either because you misunderstand
them or simply because you make a typing mistake, the computer will recognize that something is
wrong and tell you that it needs to be corrected.

The mechanisms used to inform the programmer of syntactic errors vary from one IDE to
another. The web IDE for Grace examines the text you have entered and indicates fragments of
your program that it has identified as errors by displaying an error icon (a red “x”) on the offending
line at the left margin. If you point the mouse at the the error icon, the IDE will display a message
explaining the nature of the problem. For example, If we accidentally left out the closing “}” after
the body of the onMousePress method while entering the program shown in Figure ??, the IDE
would place a red “x” on the last line of the method. Pointing the mouse at the underlined semicolon
would cause the IDE to display the message “syntax error, a method must end with ’}” as shown in
Figure 1.12. FIX! IFix the figureJ

The bad news is that your IDE will not always provide you with a message that pinpoints your
mistake so clearly. When you make a mistake, your IDE is forced to try to guess what you meant
to type. As we have emphasized earlier, your computer really cannot be expected to understand
what your program is intended to do or say. Given its limited understanding, it will often mistake
your intention and display error messages that reveal its confusion. For example, if you type FIX!

INeed appropriate Grace error with obscure message to replace example below.J

canvas.clear;

26

Figure 1.12: Eclipse displaying a syntax error message

instead of

canvas.clear();

in the body of the onMouseRelease method of our example program, the IDE will print something
stupid. In such cases, the error message is more likely to be a hindrance than a help. You will just
have to examine what you typed before and after the position where the IDE identified the error
and use your knowledge of the Grace language to identify your mistake.

A program that is free from syntax errors is not necessarily a correct program. Think back to
our instructions for performing calculations that was designed to leave you thinking about Danish
elephants. If while typing these instructions we completely omitted a line, the instructions would
still be grammatically correct. Following them, however, would no longer lead you to think of
Danish elephants. The same is true for the example of saying “left” when you meant to say “right”
while giving driving directions. Mistakes like these are not syntactic errors; they are instead called
logic errors. They result in an algorithm that doesn’t achieve the result that its author intended.
Unfortunately, to realize such a mistake has been made, you often have to understand the intended
purpose of the algorithm. This is exactly what computers don’t understand. As a result, your IDE
will give you relatively little help correcting logic errors.

As a simple example of a logical error, suppose that while typing the onMouseRelease method for
the TouchyWindow program you got confused and typed onMouseExit instead of onMouseRelease.
The result would still be a perfectly legitimate program. It just wouldn’t be the program you meant
to write. Your IDE would not identify your mistake as a syntax error. Instead, when you ran the
program it just would not do what you expected. When you released the mouse, the “I’m Touched”
message would not disappear as expected.

27

This may appear to be an unlikely error, but there is a very common error which is quite similar
to it. Suppose instead of typing the name onMouseRelease you typed the name onMooseRelease.
Look carefully. These names are not the same. Thus onMooseRelase is not the name of one of the
special event handling methods discussed in the preceding sections. In more advanced programs,
however, we will learn that it is sometimes useful to define additional methods that do things other
than handle events. The programmer is free to choose names for such methods. onMooseRelease
would be a legitimate (if strange) name for such a method. That is, a program containing a method
with this name has to be treated as a syntactically valid program by any Grace IDE. As a result,
your IDE would not recognize this as a typing mistake, but when you ran the program Grace would
think you had decided not to associate any instructions with mouse release events. As before, the
text “I’m Touched” would never be removed from the canvas.

There are many other examples of logical errors a programmer can make. Even in a simple
program like TouchyWindow, mistyping screen coordinates can lead to surprises. If you mistyped an
x coordinate as in

def oopsLoc = aLocation.at(400,50)

aText.at(oopsLoc)with("I’m Touched")on(canvas)

the text would be positioned outside the visible region of the program window. It would seem as if
it never appeared. If the line

canvas.clear

had been placed in the onMousePress method with the line to construct the message, the message
would disappear so quickly that it would never be seen.

Of course, in larger programs the possibilities for making such errors just increases. You will
find that careful, patient, thoughtful examination of your code as you write it and after errors are
detected is essential.

1.8 Summary

Programming a computer to say “I’m Touched.” is obviously a rather modest achievement. In the
process of discussing this simple program, however, we have explored many of the principles and
practices that will be developed throughout this book. We have learned that computer programs are
just collections of instructions. These instructions, however, are special in that they can be followed
mechanically, without understanding their actual purpose. This is the notion of an algorithm, a
set of instructions that can be followed to accomplish a task without understanding the task itself.
We have seen that programs are produced by devising algorithms and then expressing them in a
language which a computer can interpret. We have learned the rudiments of the language we will
explore further throughout this text, Grace. We have also explored how we can use a web browser
to enter computer programs, translate them into a form the machine can follow, and run them.

Despite our best efforts to explain how the language and development system work, there is
nothing that can take the place of actually writing, entering, and running a program. We strongly
urge you to do so before proceeding to read the next chapter. We cannot stress enough that you
can only learn to program through writing lots of programs. Now is a good time to start.

28

Chapter 2

What’s in a name?

An important feature of a programming language is that the vocabulary used can be expanded by
the programmer. Suppose you want to draw a line that ends at the current position of the mouse.
The actual location of this point will not be determined until the program you write is being used.
To talk about this position in your program you must introduce a name that will function as a place
holder for the information describing the mouse’s position. Such names are somewhat like proper
names used to refer to the character in a story. You cannot determine their meanings by simply
looking them up in a standard dictionary. Instead, the information that enables you to interpret
them is part of the story itself. In this chapter, we will continue your introduction to programming
in Grace by discussing in more detail how to introduce and use such names in Grace programs. In
addition, we will introduce additional details of the primitives used to display graphics.

2.1 Naming and Modifying Objects

Constructions like:
aLine.from(oneLocation) to (anotherLocation) on (canvas)

provide the means to place a variety of graphic images on a computer screen. Most programs that
display graphics, however, do more than just place graphics on the screen. Instead, as they run they
modify the appearance of the graphics they have displayed in a variety of ways. Items are moved
about the screen, buttons change color when the mouse cursor is pointed at them, text is highlighted,
and often items are simply removed from the display. To learn how to produce such behavior in a
Grace program, we must learn about operations that change the properties of objects after they
have been constructed. These operations are called mutator methods, based on the non-biological
meaning of the word “mutate”, to change or alter.

2.1.1 Mutator Methods

Just as each class of graphical objects has a specific name that must be used in a construction, each
mutator method has a specific name. The names are chosen to suggest the change associated with
the method, but there are some subtleties. For example, there are two mutator methods that can
be used to move a graphical object to a new position on the screen. They are named moveBy and
moveTo. The first tells an object to move a certain distance from its current position. The second is
used to move an object to a position described by a pair of coordinates regardless of its previous

29

position.

With most mutator methods, including moveBy and moveTo, the programmer must specify
additional pieces of information that determine the details of the operation applied. For example,
when you send a request moveBy to an object, you need to tell it how far. The syntax used to
provide such information is similar to that used to provide extra information in a construction. A
comma-separated list of values is placed in parentheses after the method name. Thus, to move an
object associated with the identifier someObj by 30 pixels to the right and 15 pixels down the screen
one would say:

someObj.moveBy(30,15)

While the use of a mutator method shares portions of the syntax of a construction, there are
major syntactic and conceptual differences between the two. A construction produces a new object.
A mutator method is used to modify an already existing object. To make this clear, let us consider
a simple example.

Many programs start by displaying an entertaining animation. With our limited knowledge of
Grace, we can’t yet manage an entertaining animation, but we can, with a bit of help from the
program’s user, create a very simple animation. In particular, we can write a program that displays
a circle near the bottom of the canvas and then moves the circle up a bit each time the mouse is
clicked. With a bit of imagination, you can think of the circle as the sun rising at the dawn of a
new day.

Without knowing anything about mutator methods, you should be able to imagine the rough
outline of such a program. Basically, from the description it is clear that the object inheriting
from aGraphicApplication needs to construct a FilledOval . It is also clear that the program will need
to define an onMouseClick method that uses the moveBy mutator method. You don’t know enough
to write this method yet. The fact that onMouseClick will be used, however, should tell you a bit
more about the code in the object. If the user of our program needs to click the mouse to get it to
function, then, just as we did in our improved version of TouchyWindow, we should include code to
display instructions telling the user to do this. So, your first draft of an object expression might
look something like:
object {

inherits aGraphicApplication . size (200,200)

def startSun = aLocation.at(50, 150)
def startInstructions = aLocation.at(20, 20)

aFilledOval .at(startSun) size (100, 100) on (canvas)

aText.at(startInstructions) with ("Click the mouse repeatedly") on (canvas)

startGraphics
}

This code will produce an image like that shown in Figure 2.1. In an effort to make it look like
the sun is rising over the horizon, the oval is positioned so that its bottom half extends off the
bottom of the window leaving only the top half visible. Of course, it might help your imagination if
the “sun” were yellow, but we will have to wait until we learn a bit more Grace before we can fix
that.

Now, consider how we would complete the program by writing the onMouseClick method. To
make an object move directly upwards, we need to use the move method specifying 0 as the distance

30

Figure 2.1: An oval rises over the horizon

to move horizontally and some negative number for the amount of vertical motion desired since y
coordinates decrease as we move up the screen. Something like:

moveBy(0,−5);

might seem appropriate. The problem is that if this is all we say, Grace will not know what to move.
In the body of the object expression above, we construct two graphical objects, the filled circle and
the text displaying the instructions. Since they are both graphical objects, we could move either of
them. If all we say is moveBy, then Grace has no way of knowing what we want moved.

To avoid ambiguities like this, Grace won’t let us simply say moveBy. Instead we have to tell
a particular object to move. In general, Grace requires us to identify a particular object as the
target whenever we wish to use a mutator method. You have already seen an example of the Grace
syntax used to provide such information. In our first example program, when we wanted to remove
a message from the screen we included a line of the form:

canvas. clear

clear is a mutator method associated with drawing areas. The word canvas is the name Grace gives
to the area in which we can draw. Saying canvas. clear tells the area in which we can draw that all
previous drawings should be erased. When we tell an object to perform a method in this way we say
we have requested the method. Alternately, we might say that we sent a clear message to the canvas.

In general, to apply a method to a particular object, Grace expects us to provide a name or
some other means of identifying the object followed by a period and the name of the method to be
used. So, in order to move the oval created in the body of the object expression, we first have to tell
Grace to associate a name with the oval.

2.1.2 Definitions

First, we have to choose a name to use. Grace puts a few restrictions on the names we can pick.
Names that satisfy these restrictions are called identifiers. An identifier must start with a letter.
After the first letter, you can use any combination of letters, digits, underscores, or single quotes (’).
So, we could name our oval something like sunspot, oval2move or sun ra ’. Case is significant, so sun

31

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

def startSun = aLocation.at(50, 150)
def startInstructions = aLocation.at(20, 20)

def sun = aFilledOval .at (startSun) size (100, 100) on (canvas)

aText.at(startInstructions) with ("Click the mouse repeatedly") on (canvas)

method onMouseClick(point){
sun.moveBy(0,−5)

}

startGraphics
}

Figure 2.2: Declaring sun in the RisingSun program

is different from Sun. An identifier can be as long (or short) as you like, but it must be just one
word (i.e. no blanks or punctuation marks are allowed in the middle of an identifier). A common
convention used to make up for the inability to separate parts of a name using spaces is to start each
part of a name with a capital letter. For example, we might use a name like ovalToMove. It is also a
convention to use identifiers starting with lower case letters to name variables to help distinguish
them from the names of types (which we will talk about later).

A sequence of letters, numbers, single quotes, and underscores can be used as an identifier in a
Grace program even if it has no meaning in English. Grace would be perfectly happy if we named
our box e2d iw0’. It is much better, however, to choose a name that suggests the role of an object.
Such names make it much easier for you and others reading your code to understand its meaning.
We suggested earlier that you could think of the display produced by the program we are trying to
write as an animation of the sun rising. In this case, sun would be an excellent name for the oval.
We will use this name to complete this example.

As we saw in the last chapter, the syntax of a definition is very simple. For each name you plan
to use, you enter the word def followed by the name you wish to introduce, an equals sign, and the
value of the identifier. So, to define the name sun, which we intend to use to refer to a FilledOval , we
would add the declaration:

def sun = aFilledOval .at (startSun) size (100, 100) on (canvas)

Now that we have associated a name with the oval, we can tell grace to move it by writing
sun.moveBy(0,−5)

As a result, the contents of the program file for our animation of the sunrise might begin with the
code shown in Figure 2.2.

The form and placement of a definition within a program determines where in the program the
name can be used. This region is called the scope of the name. In particular, we will want to refer
to the name sun in the body of the object expression and in the onMouseClick method of the program
we are designing. The declaration of names that will be used in several methods should be placed

32

within the braces that surround the body of our object (or class), but outside any of the method
bodies. We recommend that these definitions be placed before all the method declarations in order
to make them easier to find when reading the rest of the code. Only code within the object we are
defining is allowed to refer to this name. Method names, by way of contrast, are generally accessible
outside of the class. We will learn later how to modify the visibility of definitions and methods.

One purpose of requiring an identifier to be introduced via a definition is to enable Grace to give
you helpful feedback if you make a mistake. Suppose that after deciding to use the name sun in our
program we made a typing mistake and typed sin in one line where we meant to type sun. It would
be nice if when Grace tried to run this program it could notice such a mistake and provide advice
on how to fix the error similar to that provided by a spelling checker. To do this, however, Grace
needs the equivalent of a dictionary against which it can check the names used in the program. The
definitions a programmer includes in their program constitute this dictionary. If Grace encounters a
name that was not declared, it reports it as the equivalent of a spelling mistake.

2.1.3 Variable Declarations

In the previous section we saw how we could associate names to objects via definitions. As we have
seen with the sun example, we may request mutator methods on these objects, and they may change
their properties. For example, when we evaluated sun.moveBy(0,-5), the object associated with sun
shifted up 5 pixels on the screen. However, once a value is associated with a name in a definition,
that name may not refer to a different object. For example, once the system has processed the
definition, we could not associate sun with a rectangle or even a different filled oval.

If we want a name that can be associated with different objects over time then we must declare
a variable. We can see the differences between definitions and variables in everyday conversation.
Proper names are usually used as definitions: ”Barack Obama” refers to the individual who served
as U.S. president from 2008 to 2016. In 2007, the phrase ”the president of the U.S.” referred to
George Bush. In 2009, it referred to Barack Obama.

When we introduce identifiers in a language, we need to decide what kind of identifier they will
be. If they will always refer to the same object then we introduce them with a definition. If they
sometimes refer to one object, but at others a different one then they will be represented via a
variable – that is, what they refer to may vary. A simple variable declaration uses the keyword var

as follows:
var president := "Barack Obama"

There are two key differences between a variable declaration and a definition. First, we use the
keyword var instead of def. Second, the value is associated with a variable using :=, while the value
is associated with a definition using =. The = should suggest that the name is always identical to
the value associated with it, while the variant of := indicates that different values may be associated
with the name over the course of the execution of the program.

A variable declared in an object is known as an instance variable. We will see later that we can
also declare variables inside methods.

It is also possible to declare an instance variable without assigning it a value. Of course we will
have to assign a value to it before we use it. Otherwise we will get an error.

We will see several examples of variables in programs later in this chapter.

33

2.1.4 Comments

In the complete version of the program, we introduce one additional and very important feature of
Grace, the comment. As programs become complex, it can be difficult to understand their operation
by just reading the Grace code. It is often useful to annotate this code with English text that
explains more about its purpose and organization. In Grace, one can include such comments in the
program text itself as long as you follow conventions designed to enable the computer to distinguish
the actual instructions it is to follow from the comments. This is done by preceding such comments
with a pair of slashes (“//”). Any text that appears on a line after a pair of slashes is treated as a
comment by Grace.

The program we are writing seems a good example in which to introduce comments. Although
the program is short and simple, it is not clear that someone reading the code would have the
imagination to realize that the black circle created by the program was actually intended to reproduce
the beauty of a sunrise. The Grace language isn’t rich enough to allow one to express non-technical
ideas in code, but we can include them in comments. We include some general guidance on using
comments to make your programs easier to read and understand in Appendix ??.

dialect "objectdrawDialect"

// A program that produces an animation of the sun rising.
//The animation is driven by clicking the mouse button.
//The faster the mouse is clicked , the faster the sun will rise .
object {

inherits aGraphicApplication . size (200,200)

// location where the sun starts
def startSun = aLocation.at(50, 150)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

// Circle that represents the sun
def sun = aFilledOval .at (startSun) size (100, 100) on (canvas)

// Place instructions on the screen
aText.at(startInstructions) with ("Click the mouse repeatedly") on (canvas)

// Move the sun up a bit each time the mouse is clicked
method onMouseClick(point){

sun.moveBy(0,−5)
}

startGraphics
}

Figure 2.3: Commented code for rising sun example

The object definition in Figure 2.3 is preceded by three lines of comments. We add a line of
comment for each of the major segments of the program. In this case, the definitions of the two
locations and circle , the display of instructions, and the declaration of the onMouseClick method.

34

2.1.5 Additional Mutator Methods

There are several other operations that can be applied to graphical objects once we have the ability
to associate names with the objects. For example, as we mentioned earlier, there is a mutator
method named moveTo which moves an object to a specific location on the screen.

Many objects also have mutator methods that are designed to look like assignment statements.
As we will see below, there is a method named isVisible := that can be used to temporarily remove
or add a graphical item from or to the screen. We can use these methods to extend the behavior of
our RisingSun program.

First, the version of the program shown above becomes totally uninteresting after the mouse
has been clicked often enough to push the filled oval off the top of the canvas. Once this happens,
additional mouse clicks have no visible effect. It would be nice if there was a way to tell the program
to restart by placing the sun back at the bottom of the canvas. Second, as soon as the user starts
to click the mouse, the instructions asking the user to click become superfluous. Worse yet, at some
point, the rising sun will bump into the instructions. It would be nice to remove the instructions
from the display temporarily and then restore them when the program is reset.

All that we need to do to permit the resetting of the sun is to add the following definition of the
onMouseExit method to our RisingSun class.

method onMouseExit(point) {
sun.moveTo(startSun)

}
With this addition, the user can reset the program by simply moving the mouse out of the

program’s canvas. When this happens, the body of the onMouseExit method will tell Grace to move
the sun oval back to its initial position.

Making the instructions disappear and then reappear is a bit more work. In order to apply
mutator methods to the instructions, we will have to tell Grace to associate a name with the Text

created to display the instructions. As we did to define the name sun, we will have to both declare
the name we wish to use and associate it with the creation of the Text.

An obvious name for this object is “instructions.” If this is our choice, then we would need to
tell Grace that we planned to use this name by adding a declaration of the form:

def instructions = aText.at(startInstructions)
with("Click the mouse repeatedly")on(canvas)

to the body of the object expression.

As in this example, it is sometimes helpful to split a long command into several lines. It can
make your code much easier to read and understand. Using multiple lines for one command like
this is perfectly acceptable in Grace. You can split an instruction between two lines at any point
where you could type a space except within quoted text. Be careful, however, to make sure the
continuation line is further indented than the beginning of the statement. You will also find that the
use of indentation and blank lines can make groups of related commands stand out to the reader.
These issues are discussed further in Appendix ??.

The mutator method named isVisible := provides the means to temporarily remove or add a
bit of graphics from the display. To make the text disappear when the mouse is clicked, we would
include an instruction of the form:

instructions . isVisible := false

in the onMouseClick method. Each time the mouse is clicked, the instructions will be told to become
invisible. Of course, once they are invisible, telling them to become invisible again has no effect.

35

This mutator method is intentionally designed to look like a variable assignment statement,
because it changes an attribute (i.e., a quality or characteristic) of the object. The main difference
is that the left side of the statement includes a “.”.

When the program is reset, we want the instructions to reappear. To do this, we need to include
an instruction of the form

instructions . isVisible := true ;

in the onMouseExit method. The complete text of this revised program is shown in Figure 2.4.

The isVisible method should only be used to hide an object when it is being removed from the
canvas temporarily. If an object is being removed permanently, that is, you know that your program
will never make it visible again, there is another method named removeFromCanvas that is more
appropriate. The removeFromCanvas method irreversibly removes a graphical object from the display.
There is no way to put an object that has been removed in this way back on the display. When an
object is made invisible, the system must save information needed to display the object in case it is
made visible again. This consumes space in the computer’s memory. Using removeFromCanvas instead
allows the system to totally remove information about the object from the computer’s memory.

2.1.6 Exercises

Below are several exercises in which we will ask you to consider how one could write a program that
displayed a diamond that appeared to grow a bit each time the mouse was clicked. The following
constructions will produce a drawing of the initial diamond shape desired if executed in a program
whose canvas is 200 by 200 pixels.

def left = aLocation.at(0,100)

def right = aLocation.at(200,100)

def top = aLocation.at(100,0)

def bottom = aLocation.at(100,200)

aLine.from(top)to(right)on(canvas)

aLine.from(top)to(left)on(canvas)

aLine.from(bottom)to(right)on(canvas)

aLine.from(bottom)to(left)on(canvas)

The complete program we have in mind won’t actually make the diamond grow. Instead, all it
will do is move each of the four lines drawn by the constructions a bit closer to the corner closest to
the line each time the mouse is clicked. For example, each time the mouse is clicked, the line in the
upper left corner of the window will be moved one pixel to the left and one pixel up so that it ends
up closer to the upper left corner of the window. The line that starts in the upper right quarter of
the window, on the other hand, will be moved one pixel to the right and one pixel up with each
click of the mouse. If this is done, after a number of clicks, the display will look like picture shown
below. The four lines won’t be any longer than they were at the start, but they will appear to be
part of a bigger diamond than was originally drawn, a diamond that is too big to fit in the window.

36

dialect "objectdrawDialect"

// A program that produces an animation of the sun rising.
// The animation is driven by clicking the mouse button.
// The faster the mouse is clicked , the faster the sun will rise .

object {
inherits aGraphicApplication . size (200,200)

// location where the sun starts
def startSun = aLocation.at(50, 150)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

// Circle that represents the sun
def sun = aFilledOval .at (startSun) size (100, 100) on (canvas)

// Place instructions on the screen
def instructions = aText.at(startInstructions) with ("Click the mouse repeatedly") on (canvas)

// Move the sun up a bit each time the mouse is clicked
method onMouseClick(point){

sun.moveBy(0,−5)
instructions . isVisible := false

}

// Move the sun back to its starting position and redisplay
method onMouseExit(point){

sun.moveTo(startSun)
instructions . isVisible := true

}

startGraphics
}

Figure 2.4: Rising sun program with reset feature

37

Exercise 2.1.1 Before we can move one of these lines or any other graphical object, we must first
associate a name with the object. A list of possible names that might be used to refer to the line of
the diamond shape drawn by the construction

aLine.from(bottom)to(right)on(canvas)

are shown below. For each name, indicate whether it would be:

• invalid according to Grace’s rules for forming names,

• inappropriate as a name for this particular line because it would not help a person working
with the program remember the purpose of the name or it does not conform to Grace’s naming
conventions, or

• appropriate as a name for this particular line.

In each case, briefly explain your answer.

3rdLine thirdLine line3

Leftlower lower right line lowerLeft

southEast S.E. south-east

Exercise 2.1.2 Suppose that you selected the instance variable names leftToTop, topToRight,
rightToBottom, and bottomToLeft to describe the four lines that form the diamond. Show the declara-
tions required to introduce these names in a Grace program.

Exercise 2.1.3 Assuming that the names leftToTop, topToRight, rightToBottom, and bottomToLeft

had been chosen to describe the four lines that form the diamond and that they had been declared
appropriately, show how the constructions shown above would be turned into definitions that both
created the liness and associated the names listed with them. Where should these commands be
placed if you want the lines to appear in their initial positions as soon as the program is started?

Exercise 2.1.4 Assuming that the names leftToTop, topToRight, rightToBottom, and bottomToLeft had
been declared appropriately and associated with the lines of the diamond using assignment statements,
show the statements required to invoke the move method on each line to move the line closer to the
nearest corner of the program’s window. Each line should be moved one pixel horizontally and one

38

pixel vertically. In which method should these commands be placed if you want the lines to move
each time the mouse is clicked?

Exercise 2.1.5 Assuming that the names leftToTop, topToRight, rightToBottom, and bottomToLeft

had been declared appropriately and associated with the lines of the diamond using assignment
statements, describe the effect the following statements would have on the lines each time they were
executed. In addition, sketch the contents of the window after these lines were executed 100 times.
leftToTop.moveBy(0,1);
topToRight.moveBy(0,1);
rightToBottom.moveBy(0,−1);
bottomToLeft.moveBy(0,−1);

2.2 Non-graphical Classes of Objects

We have seen how to construct graphical objects of several varieties, associate names with them
and apply methods to these objects. All of the objects we have worked with, however, have shared
the property that they are graphical in nature. When we create any of these objects, they actually
appear somewhere on the computer’s screen. This is not a required property of objects that can
be manipulated by a Grace program. In this section we will introduce two classes of objects that
are related to producing graphics but do not correspond to particular shapes that appear on your
screen.

2.2.1 The Class of Colors

So far, all the graphics we have drawn on the screen have appeared in black, as black is the default
color in which graphics are drawn. To add a little variety to the display, we can change the color of
any graphical object in the object draw library by a statement of the form

grObj. color := newColor

where grObj is the graphical object and newColor is the new color. Just as we saw earlier with
isVisible , color := is actually a method request with parameter newColor.

It would certainly be an improvement to make the sun displayed by our RisingSun program
appear yellow or any other more “sun-like” color than black. It is quite simple to make this change.
All we have to do is add a line to reset the color to our object. The revised program would look like:
dialect "objectdrawDialect"

// A program that produces an animation of the sun rising.
//The animation is driven by clicking the mouse button.
//The faster the mouse is clicked , the faster the sun will rise .
object {

inherits aGraphicApplication . size (200,200)

// location where the sun starts
def startSun = aLocation.at(50, 150)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

// Circle that represents the sun

39

def sun = aFilledOval .at (startSun) size (100, 100) on (canvas)
sun. color := yellow

// Place instructions on the screen
aText.at(startInstructions) with ("Click the mouse repeatedly") on (canvas)

// Move the sun up a bit each time the mouse is clicked
method onMouseClick(point){

sun.moveBy(0,−5)
}

startGraphics
}

When resetting the color, we must specify a color value. The simplest way to specify the color is
to use one of Grace’s built-in color names. We chose yellow for our sun, but if we wanted a more
dramatic sunrise we could have instead used red. The objectdraw library in Grace provides names
for all the basic colors including white, black, green, red, gray, blue, cyan, magenta, and neutral . Of
course, there are too many shades of each color to assign a name to every one. Accordingly, the
objectdraw library provides a class for creating new colors.

We have seen that names in Grace can be associated with objects like the drawing area (canvas),
or graphical objects we have created. You might suspect that if a color can be associated with a
name it might be thought of as an object. In this case, you would be right.

If we want to set the color of our sun to something not included in the small set of colors that
have names, we can describe the particular color we want by writing:

aColor. r (...) g (...) b (...)

as long as we know the right information to use in place of the dots between the parentheses.

When we want to construct a new color for use in a program, we must provide a numerical
description of the color as parameters to the construction. Grace uses a system that is fairly common
for specifying colors on computer systems. Each color is described as a mixture of the three primary
colors: red, green and blue.1 The mixture desired is specified by giving three numbers, each of which
specifies how much of a particular color should be included in the mixture. Each of the numbers
can range from 0 (“use none of this particular primary color”) to 255 (“use as much of this color
as possible”). If the numbers for the red, green, and blue components are all 0’s then the color is
black. If all are 255 then the color is white. If the green component is 255 and the other two are 0
then not surprisingly we get green. If both the red and blue components are 255, while the green is
0 then we get a shade of purple. So if you want to make the sun purple you could construct the
desired color by saying:

aColor. r(255)g(0)b(255)

Colors are objects. Therefore, just as you can associate names with objects such as FilledOvals,
you can associate names with colors. If you wanted to use the color purple in a program you might
first define the identifier purple as:

def purple = aColor.r(255)g(0)b(255)

You could then make the sun purple by replacing the statement used to make the sun yellow by:

1If you thought the primary colors were red, yellow and blue you aren’t confused. Those are the primary colors
when mixing materials that absorb light (like paint). When mixing light itself (as in flashlight beams or the light given
off by the phosphors on a computer screen), red, blue and green act as the primary colors. Mixing red and blue lights
produces purple. Mixing red and green produces yellow. Mixing all three primary colors together produces white.

40

sun. color := purple

It is worth noting that it is not actually necessary to introduce a new name to use a color created
using a construction. When we update the color of an object, we have to provide the color we wish
to use as to the right of :=, but we can describe the desired color in several ways. In particular, we
could make the sun purple by simply writing

sun. color := aColor. r(255)g(0)b(255)

The construction describes the color just as well as the name purple from Grace’s point of view.

In general, wherever Grace allows us to identify an object or value by name, it will accept any
other phrase that describes the equivalent object.

Just as we can build a color using numbers representing their red, green, and blue components,
we can send method requests to colors asking for those same numeric components. The names
of the methods are red, green, and blue. Thus if someColor is an identifier associated with a color,
someColor.red will return a number corresponding to the red component.

If we wish to print out information about a string, we can also ask it for a string representation
of the color using the method asString . For example, if purple is as defined above then purple . asString

returns the string “rgb(255,0,255)”, which could be used in a print statement.

————————————————————————————————

We will find it useful to include a method asString for most of our objects so that we
can retrieve and print useful information about them. For example, if we execute the
following code snippet:

def origin = aLocation(0,0)
def myRect = aFramedRect.at (origin) size (50,100) on (canvas)
print (myRect.asString)

then the system will print out “FramedRect at (0,0) with height 50, width 100, and
color rgb(0,0,0)”.

In fact, because asString is provided for all objects, you may leave off the asString in a
print statement and the system will automatically apply the method. Thus you may
simply write print (myRect) and the exact same string will be printed.

————————————————————————————————

Unlike our graphical objects, colors are immutable. That is, there are no methods that modify
its state. While we can use the mutator method moveBy on a framed rectangle in order to change
its position, there are no mutator methods for colors. If you want a color that is slightly different
from an existing color, you must create a new color rather than modifying the original.

For example, suppose you wanted a color that was a bit lighter than the existing color associated
with the identifier someColor. Then we could create a new color whose components are each 5 units
greater than that by writing

aColor. r(someColor.red+5)g(someColor.green+5)b(someColor.blue+5)

Exercise 2.2.1 Write a method that creates a red oval when the mouse is clicked. The oval should
be 100 pixels in width and 75 pixels in height and should appear 50 pixels down from the top of the
canvas and 50 pixels in from the left of the canvas.

41

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (400,400)
var horizontalCorner := aLocation.at (0,0)
var verticalCorner := aLocation.at (0,0)

method onMouseClick(point: Location){
aFilledRect .at(verticalCorner) size (5, 200) on (canvas)
aFilledRect .at(horizontalCorner) size (200, 5) on (canvas)
verticalCorner := verticalCorner . translate (10,0)
horizontalCorner := horizontalCorner . translate (0,10)

}

startGraphics
}

Figure 2.5: An application of the translate method

2.2.2 The Location Class

As we have seen above, we can use a triple of numbers to construct an object representing a color.
Earlier we saw that we could use pairs of numbers to create locations in our drawing window by
constructing objects using aLocation.at(x,y).

Like the color objects described above, locations are immutable. There are no mutator methods
that they respond to. The methods that are associated with locations are x, y, translate , and
distanceTo.

Not surprisingly, the first two return the x and y coordinates of the location. Writing startingLocn

. translate (dx,dy), where dx and dy are numbers returns a new location that is dx to the right and dy

down from startingLocn . The method request startingLocn .distanceTo(endLocn) returns the distance
from startingLocn to endLocn.

To clarify how translate works, consider the sample program shown in Figure 2.5. Each time
the mouse is clicked, this program will draw what appear to be a pair of thick, perpendicular lines,
though in reality they are very thin rectangles. The first lines drawn will intersect at the upper
left corner of the window. With each click, the lines drawn will be placed to the left and below the
preceding lines so that the window is eventually filled with a grid pattern.

The program includes two variables named verticalCorner and horizontalCorner . Each of these
names describes the location at which one of a pair of FilledRect s will be drawn when the user clicks
the mouse.

When the object expression is evaluated the computer creates two objects that both describe
the point at the origin of the coordinate system, the upper left corner of the canvas. One of these
objects is associated with the name verticalCorner and the other with the name horizontalCorner .
Although they both refer to the origin initially, two distinct variables are needed because they will
be updated to describe different locations using the translate method in other parts of the program.

The names assigned to these two locations reflect the way they are used in the program’s other
method, onMouseClick. Each time the mouse is clicked, this method creates two long, thin rectangles
on the screen. The rectangle created by the first construction in onMouseClick is a long vertical
rectangle. The position of its upper left corner is determined by verticalCorner . The other rectangle

42

Figure 2.6: Display after one click

is a long horizontal rectangle and its position is determined by horizontalCorner .

Since both of the Locations initially describe the upper left corner of the canvas, the first time
the mouse is clicked, the rectangles created by the execution of the first two lines of onMouseClick

will produce a drawing like that shown in Figure 2.6.

The last two commands in onMouseClick tell the Location objects named verticalCorner and
horizontalCorner to create new locations using translate so that they describe new positions on
the screen. verticalCorner . translate (10,0) returns the position 10 pixels to the right of its initial
position. That new location is then associated with verticalCorner by the assignment statement with
verticalCorner on the left.

The expression horizontalCorner . translate (0,10) provides a location 10 pixels down from horizontalCorner

. After this value has been calculated, horizontalCorner is updated to this new location.

When these assignment statements are completed, nothing changes on the screen. The program’s
window will still appear as shown in Figure 2.6 after they have been performed. However, the
variables will refer to the new positions

The next time the mouse is clicked the two constructions at the beginning of onMouseClick are
performed based on the new locations associated with the two variables. Accordingly, the vertical
rectangle created will appear a bit farther to the right and the horizontal rectangle will appear a bit
farther down the screen as shown in Figure 2.7. After these rectangles are created, the last two
lines of the method will again create new location farther to the right and down the screen so that
the rectangles produced by the next click will appear at the correct locations.

This process will be repeated each time the mouse is clicked. After about 15 additional clicks,
the window will be nearly filled with a grid of lines as shown in Figure 2.8. Just a few more clicks
will complete the process of filling the screen.

2.3 Layering on the Canvas

Now that we can set the color of a graphical object, we could actually make a much prettier picture
for our rising sun program. We will add a blue sky and some white clouds to go with the sun. The

43

Figure 2.7: Display after second click

Figure 2.8: Display after many clicks

44

Figure 2.9: Today’s forecast: Partly cloudy

picture we have in mind is shown in Figure 2.9.

While we could just create the objects for the sky, sun, and cloud, we will need to associate
them with names so that we can set the colors:

def origin = aLocation.at(0,0)
def startSun = aLocation.at(50, 150)
def startCloud = aLocation.at(70, 1100)

def sky = aFilledRect .at (origin) size (300, 300) on (canvas)
def sun = aFilledOval .at(startSun) size (100, 100) on (canvas)
def cloud = aFilledOval .at(startCloud) size (160, 40) on (canvas)

We then set their colors appropriately using their names:
sky. color := blue
sun. color := yellow
cloud. color := white

Suppose we changed this code by reordering the definitions so that the sun is created after the
cloud as in:

def sky = aFilledRect .at (origin) size (300, 300) on (canvas)
def cloud = aFilledOval .at(startCloud) size (160, 40) on (canvas)
def sun = aFilledOval .at(startSun) size (100, 100) on (canvas)

This will change the picture drawn so that it resembles the drawing shown in Figure 2.10. The sun
and the cloud still overlap, but now part of the cloud is hidden behind the sun rather than the other
way around. (We know, this can never happen in real life, but let’s pretend!)

The canvas views the collection of objects it has been asked to display as a series of layers. When
a new object is created it is placed in a layer above all the older objects on the canvas. When two
objects overlap, the object on the lower level will be partially or completely hidden by the object
on the upper level. In the code to produce Figure 2.9, the sun was created before the cloud and
therefore was drawn as if it was underneath the cloud. In the revised code, the moon was created
last and therefore is drawn as if it is above the cloud.

None of the methods we have considered so far changes this layering. Changing an object’s
color or moving it will not change the way in which it is drawn when it overlaps with other objects.

45

Figure 2.10: Tonight’s forecast: Partly sunny?

If we included code to move the sun as in our RisingSun program, the sun would move vertically
on the screen, but it would still remain on a layer below the cloud. It would therefore appear to
slide upward while remaining behind the cloud. Even reseting the isVisible attribute preserves
this ordering. If we reset the isVisible attribute of an object from false to true, it will reappear
underneath the same objects that have been above it before it was hidden. In particular, it does
not appear at the top level as if it had just been created.

There are, however, several methods that are provided to enable a programmer to rearrange the
layering of objects on the screen. The methods sendForward and sendBackward move an object up or
down one layer. The methods sendToFront and sendToBack move an object to the top or bottom of
all the layers drawn. Thus, if we had created the picture shown in Figure 2.9 and then executed
either the command

cloud.sendBackward

or the command
sun.sendToFront

the picture displayed would change to look like Figure 2.10.

2.4 Accessing the Location of the Mouse

In the header of every mouse event handling method we have included the identifier point in
parentheses after the name of the method. Now that we have explained what a location is, we can
explain the purpose of this phrase. It provides a means by which we can refer to the point at which
the mouse cursor was located when the event handled by a method occurred. Basically, within the
body of a mouse event handling method that includes the identifier point we can use the name point

to refer to a location object that describes where in the canvas the mouse was positioned.

As a simple example, we can write a variant of our very first example program “TouchyWindow”.
This new program will display a bit of text on the screen when the mouse is pressed, just like
TouchyWindow, but:

1. it will display the word “Pressed” instead of the phrase “I’m Touched.”,

46

2. it will place the word where the mouse was clicked instead of in the center of the canvas, and
finally

3. it will not erase the canvas each time the mouse is released

The code for this new example is shown below.
dialect "objectdrawDialect"

// program that displays the word ”pressed” wherever
// the mouse is pressed
object {

inherits aGraphicApplication . size (400,400)

// When the user presses mouse, write: I’m touched
// on canvas at coordinates (180,200)
method onMousePress(point)−>Done{

aText.at(point)with ("Pressed") on (canvas)
}

// create window and start graphics
startGraphics

}
Note that the name point is used in the construction that places the Text “Pressed” on the screen.
Because point is included in the method’s header, Grace knows that we want the computer to make
this name refer to the location at which the mouse was clicked. Therefore Grace will place the word
“Pressed” wherever the mouse is pressed.

An identifier that is enclosed by parentheses in a method header is known as a formal parameter
or just parameter. As in variable declarations and definitions, we are free to use any name we want
when we declare a formal parameter. There is nothing special about the name point (except that we
have used it in all our examples so far). We can choose any name we want for the mouse location as
long as we place the name in parentheses in the header of the method. For example, the program
shown in Figure 2.11, which uses the name mousePosition as its formal parameter instead of point,
will behave exactly like the version that used the name point.

2.5 Sharing Parameter Information between Methods

Another important aspect of the behavior of formal parameter names like mousePosition and point is
that each formal parameter name is meaningful only within the method whose header contains its
declaration. To illustrate this, consider the program shown in Figure 2.12. This program displays
the word “Pressed” at the current mouse position each time the mouse button is pushed, and it
displays the word “Released” at the current mouse position each time the mouse is released. The
onMousePress method in this example is identical to the corresponding method from the Pressed

example except for the name chosen for its formal parameter. The onMouseRelease method is also
quite similar to the earlier program’s onMousePress.

Exercise 2.5.1 When the above program is executing, if the user clicks the mouse (a quick press
and release without moving the mouse), then the words ”Pressed” and ”Released” will be written on
top of each other. What happens if the user presses the mouse, drags it to somewhere else on the
canvas and only then releases the mouse?

47

dialect "objectdrawDialect"

// program that displays the word ”pressed” wherever
// the mouse is pressed
object {

inherits aGraphicApplication . size (400,400)

// When the user presses mouse, write: I’m touched
// on canvas at coordinates (180,200)
method onMousePress(mousePosition)−>Done{

aText.at(mousePosition)with ("Pressed") on (canvas)
}

// create window and start graphics
startGraphics

}

Figure 2.11: Using a different parameter name

dialect "objectdrawDialect"

// program that displays the words ”pressed” and
//”released” when the mouse is pressed or released
object {

inherits aGraphicApplication . size (400,400)

// When the user presses mouse, write ”Pressed”
// on canvas at current mouse location
method onMousePress(pressPosition)−>Done{

aText.at(pressPosition)with ("Pressed") on (canvas)
}

// When the user releases mouse, write ”Released”
// on canvas at current mouse location
method onMouseRelease(releasePoint)−>Done{

aText.at(releasePoint)with ("Released") on (canvas)
}

// create window and start graphics
startGraphics

}

Figure 2.12: A program to record mouse button changes

48

Figure 2.13: Connecting the ends of a mouse motion

Suppose now that we wanted to write another program that would display the words “Pressed”
and “Released” just as the UpsAndDowns example but would also draw a line connecting the point
where the mouse button was pressed to the point where the mouse button was released. A snapshot
of what the window of such a program would look like right after the mouse was pressed, dragged
across the screen, and then released is shown in Figure 2.13.

Given that the UpsAndDowns program has names that refer to both the point where the mouse
button was pressed and the point where the mouse button was released, it might seem quite easy to
modify this program to add the desired line drawing feature. In particular, it probably seems that
we could simply add a construction of the form:

aLine.from(pressPosition)to(releasePoint)on(canvas)

to the program’s onMouseRelease method.

THIS WILL NOT WORK!

Because pressPosition is declared as a formal parameter in onMousePress, Grace will not allow
the programmer to refer to it in any other method. Grace will treat the use of this name in
onMouseRelease as an error and refuse to run the program. In general, parameter names can not be
used to share information between two different methods.

If we want to share information about the mouse location between two event handling methods,
we must use formal parameters and instance variables together. We have already seen that instance
variables and definitions can be used to provide information to methods. In the RisingSun example,
evaluating the object created the oval that was then associated with the identifier sun. The method
onMousePress later moved the oval by sending a method request to the object associated with sun.

In order to write a program to draw a line between the points where the mouse was pressed and
released, we will have to associate an instance variable name with the location where the mouse was
pressed. This variable will then make it possible for onMousePress to share the needed information
with onMouseRelease. We will choose firstPoint as the name for this variable.

The completed program will look like the code shown in Figure 2.14.

When the mouse is pressed, the assignment
firstPoint := pressPosition ;

49

dialect "objectdrawDialect"

// program that displays the words ”pressed” and
//”released” when the mouse is pressed or released
// It also draws a line from the pressed to the
// released location .
object {

inherits aGraphicApplication . size (400,400)

// Where mouse was pressed
var firstPoint

// When the user presses mouse, write ”Pressed”
// on canvas at current mouse location
method onMousePress(pressPosition)−>Done{

aText.at(pressPosition)with ("Pressed") on (canvas)
firstPoint := pressPosition

}

// When the user releases mouse, write ”Released”
// on canvas at current mouse location
method onMouseRelease(releasePoint)−>Done{

aText.at(releasePoint)with ("Released") on (canvas)
aLine.from(firstPoint)to(releasePoint)on(canvas)

}

// create window and start graphics
startGraphics

}

Figure 2.14: A Program to track mouse actions

associates the name firstPoint with the Location of the mouse. This assignment is interesting in
several ways. It is the first assignment we have encountered in which the right side of the equal
sign represents something other than the construction of a new object. In the general form of the
assignment statement, the expression on the right side of the := can be any phrase that describes
the object we wish to associate with the name on the left. So, in this case, rather than creating a
new object, we take the existing location object that is named pressPosition and give it a second
name, firstPoint .

Immediately after this assignment, the location that describes the mouse position has two names.
This may seem unusual, but it isn’t. Most of us can also be identified using multiple names (e.g.
your first name, a nickname, or Mr. or Ms. followed by your last name).

This assignment also illustrates the fact that a variable in a Grace program may refer to different
things at different times. Suppose when the program starts you click the mouse at the point
with coordinates (5,5). As soon as you do this, onMousePress is invoked and the name firstPoint

is associated with a location that represents the point (5,5). If you then drag the mouse across
the screen, release the mouse button and then press it again at the point (150,140), onMousePress is
invoked again and the assignment statement in its body tells Grace to associate firstPoint with a
location that describes the point (150,140). At this point, Grace forgets that firstPoint ever referred

50

Figure 2.15: Scribbing with a computer’s mouse

to (5,5). A variable in Grace may refer to different objects at different times, but at any given time
it refers to exactly one thing (or to nothing if no value has yet been assigned to the name).

Exercise 2.5.2 Why did we declare firstPoint to be a variable rather than a definition?

In fact, the values associated with most instance variables are changed frequently. To illustrate
the usefulness of such changes, we can write a simple drawing program.

Complex drawing programs provide many tools for drawing shapes, lines, and curves on the
screen. We will write a program to implement the behavior of just one of these tools, the one that
allows the user to scribble on the screen with the mouse as if it was a pencil. A sample of the kind
of scribbling we have in mind is shown in Figure 2.15. The program should allow the user to trace a
line on the screen by depressing the mouse button and then dragging the mouse around the screen
with the button depressed. The program should not draw anything if the mouse is moved without
depressing the button.

The trick to writing this program is to realize that what appears to be a curved line on a
computer screen is really just a lot of straight lines hooked together. In particular, to write this
program what we want to do is notice each time the mouse is moved (with the button depressed)
and draw a line from the place where the mouse started to its new position. Each time the mouse is
moved with its button depressed, Grace will follow the instruction in the onMouseDrag method. So,
within this method, we want to include an instruction like:

aLine.from(previousPosition)to(currentPosition)on(canvas)

where previousPosition and currentPosition are names that refer to the previous and current positions
of the mouse. The trick is to also include statements that will ensure that Grace associates these
names with the correct locations.

Associating the correct location with the name currentPosition is easy. When onMouseDrag is
invoked, the computer will automatically associate the current mouse location with whatever name
we choose to use as the method’s formal parameter name. So, if the header we use when declaring
onMouseDrag looks like:

onMouseDrag(currentPosition)

51

we can assume that the name currentPosition will refer to the location of the mouse when the method
is invoked.

Getting the correct Location associated with previousPosition is a bit trickier. Think carefully for
a moment about the beginning of the process of drawing with this program. The user will position
the mouse wherever the first line is to be drawn. Then the user will depress the mouse button and
begin to drag the mouse. The first line drawn should start at the position where the mouse button
was depressed and extend to the position to which the mouse was first dragged. This situation is
similar to the problem we faced when we wanted to draw a line between the point where the mouse
was depressed and the point where the mouse was released. The position at which the mouse button
is first depressed will be available through the formal parameter of the onMousePress method but
we need to access it in the onMouseDrag method because this is the method that will actually draw
the line. We can arrange for onMousePress to share the needed information with onMouseDrag by
declaring the name previousPosition as an instance variable and including an appropriate assignment
in onMousePress to associate this name with the position where the mouse button is first pressed.

Given this analysis, we will include an instance variable declaration of the form:
var previousPosition

and then write the following definition for onMousePress:
method onMousePress(pressPosition) {

previousPosition := pressPosition ;
}

We also know that the onMouseDrag method must contain the line construction shown above and
that its formal parameter should be named currentPosition . So, a first draft of this method would be:

onMouseDrag(currentPosition) {
aLine.from(previousPosition)to(currentPosition)on(canvas)

}
Unfortunately, if we were actually to use this code, the program would not behave as we want.

For example, if we were to start near the upper left corner of the screen and then drag the mouse in
an arc counterclockwise hoping to draw the picture shown below on the left, the program would
actually draw the picture shown on the right.

The problem is that we are not changing the point associated with previousPosition as often as we
should. In onMousePress, we tell the computer to make this name refer to the point where the mouse
is first pressed and it continues to refer to this point until the mouse is released and pressed again.
As a result, as we drag the mouse all the lines created start at the point where the mouse button
was first pressed. Instead, after the first line has been drawn, we always want previousPosition to
refer to the mouse’s position when the last line was drawn. To do this, we must add the assignment

52

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (400,400)

// beginning point for next line
var previousPosition :Location

// Choose color randomly for next line and remember start
method onMousePress(pressPosition) −> Done {

previousPosition := pressPosition
}

// Draw lines to follow mouse
method onMouseDrag(currentPosition) −> Done{

aLine.from(previousPosition)to(currentPosition)on(canvas)
previousPosition := point

}

startGraphics
}

Figure 2.16: A simple sketching program

————————————————————————————————

statement:
previousPosition := currentPosition

at the end of the onMouseDrag method yielding the complete program shown in Figure 2.16.

Exercise 2.5.3 Explain why the assignment statement is still needed in onMousePress as shown
below even though previousPosition is always updated in onMouseDrag:

method onMousePress(pressPosition) {
previousPosition := pressPosition ;

}

2.6 Summary

In this chapter we explored the importance of the use of names to refer to the objects our programs
manipulate. Instance variable and definition names were used to share information between methods,
and formal parameter names provided a means to pass information from outside the program into a
method body.

Identifiers introduced in definitions need to have a value associated with them in the definition.
Once associated with an object, they may not be associated with other objects, though mutator
methods requested on the object may change its attributes. Variables have to be assigned a value
using := before they are used. They could be assigned to a new object at any time using :=. Formal
parameters are introduced in method headers. They are associated with values when the method is

53

executed. For example, when onMousePress is executed, the formal parameter is associated with the
location of the mouse at that time.

We learned more about displaying simple graphical objects on our program’s canvas and learned
how to modify the properties of these objects using mutator methods. In addition, we learned that
the objectdraw library contains classes that can generate objects representing locations and colors.
These objects are not themselves visible on our screen, but are used in creating and modifying
graphic images on the canvas.

In case you did not notice, the last example program we discussed, the Scribble program, was
different from most of the other examples in one important regard. It actually is (at least part of)
a useful program. This reflects the fact that the features we have explored are fundamental to the
construction of all Grace programs. With this background, we are now well prepared to expand our
knowledge of the facilities Grace provides.

54

Chapter 3

Working with Numbers

In the preceding chapter, we used numbers extensively to manipulate graphical objects. They were
used to specify coordinates, dimensions, and even colors. While we used numbers to describe what
we wanted to do to various graphical objects, we did not do much of interest with the numbers
themselves. Numbers are of critical importance to Grace. Just as Grace provides operations to let
us work with graphical objects, it provides operations to let us work with numbers. In this chapter
we will explore some of these operations. We will see how to obtain numerical values describing
properties of existing objects, how to perform basic arithmetic computations, how to work with
numeric variables, and how to display numeric values.

3.1 Writing numbers

We’ve already seen several examples of using numbers in Grace, but there are some rules you should
be aware of integral values can be written without decimal points and may optionally be preceded
by a minus sign: 5, 147, -12, 0.

Non-integral values can be written using a decimal point. If a decimal point is used, there must
be a digit on either side. Thus 15.3, −1.7, and 0.0005 are fine, but 12. and .7 are not legal in Grace.

FIX! IThe following is in the spec, but not currently supported in Grace.J Scientific notation is available
to write very large or very small values. Thus 1.65e12 represents 1.65 ∗ 1012, while 8.02e−5 represents
8.02 ∗ 10−5.

3.2 Introduction to Accessor Methods

When we create a new location by evaluating a term like aLocation.at(50, 150) we use two numbers
to create a single location. There are many situations where it is useful to do the opposite. That
is, we have a location object and want to access the numerical values of the x and y coordinates
associated with that location.

Suppose, for example, that we decided to change the RisingSun program so that rather than
having to click the mouse to move the sun, the user could simply drag the mouse up and down and
the sun would follow it. The desired behavior is similar to the way in which the scrollbars found in
many programs react to mouse movement. If you grab the scroll box displayed in a vertical scrollbar
you can move the scroll box up and down by moving the mouse, but you can not move the scroll
box to the left or right. Similarly, in the program we have in mind, even if the mouse is dragged

55

about in spirals, the circle that represents the sun should only move straight up and down so that
its y coordinate is always the same as the y coordinate of the mouse’s current position.

In this new version of RisingSun, which we will name ScrollingSun , we need to replace the
onMouseClick method from the previous version with an onMouseDrag method of the form:

method onMouseDrag(mousePosition) {
sun.moveTo(...) ;

}

The question is what should we provide as parameter information to the moveTo method.

We want the sun to move to the position in the canvas whose x coordinate is the same as the
sun’s initial x coordinate, 50, and whose y coordinate is equal to the y coordinate of the mouse. We
can handle the x coordinate by simply typing 50 as the first parameter to the moveTo method. The
hard part is providing the y coordinate of the mouse’s position.

The location associated with mousePosition certainly contains enough information to determine
the y coordinate of the mouse. Grace lets us ask the location for this information through a
mechanism called an accessor method. Like the mutator methods discussed in the preceding chapter,
a small collection of accessor methods is associated with each class of objects. Location objects
support two accessor methods, x and y.

To use an accessor method we write a name that refers to the object that is the target of the
request followed by a period, the name of the method to be applied, and, if necessary, a parenthesized
list of parameter values. So, to position the sun appropriately in the onMouseDrag method, we can
calculate the new location newSunLocn using mousePosition.y and then use that to set the new location
of sun

newSunLocn := aLocation.at(50,mousePosition.y)
sun.moveTo(newSunLocn)

You should observe that the notation for using accessor methods is identical to the notation used
for mutator methods. In the case that no parameters are provided, you do not need to include a set
of empty parentheses after the name of the method.

The complete text of the revised program is shown in Figure 3.1. With the exception of the
substitution of the new onMouseDrag method for the old onMouseClick method, the only difference
between this program and the one shown in Figure 2.3 is that the instructions displayed by the
begin method have been modified.

Accessor methods are also associated with objects of the graphics classes introduced in the last
chapter. The location and dimensions of a graphical object can be accessed using methods named
x, y, width and height. Like the methods discussed above, these accessor methods provide numeric
information about an object. In addition, there are accessor methods associated with graphical
objects that provide other forms of information. There is a method named color that returns the
color of a graphical object. Similarly, location returns a location object describing an object’s current
position.

Exercise 3.2.1 Is the translate method on locations an accessor method? Why or why not?

Exercise 3.2.2 What is the difference between an accessor method and a mutator method? What
can an accessor method do that a mutator method cannot?

56

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

// location where the sun starts
def startSun = aLocation.at(50, 150)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

// Circle representing the sun
def sun = aFilledOval .at(startSun) size (100, 100) on (canvas)

var newSunLocn := startSun

// Display instructions
aText.at(startInstructions) with ("Drag the mouse up or down") on (canvas)

// Drag to raise or lower the sun
method onMouseDrag(mousePosition){

newSunLocn := aLocation.at(50,mousePosition.y)
sun.moveTo(newSunLocn)

}

startGraphics
}

Figure 3.1: Program to make the sun scroll with the mouse

Figure 3.2: Drawing produced by the DrawGrid program

57

3.3 Accessing the Size of the Canvas

In the last chapter, to keep things simple, we assumed that we knew the size of the windows in
which our programs would run. For example, the DrawGrid program presented in Section 2.2.2 draws
a grid like the one shown in Figure 3.2. The bars in this grid are created by constructions of the
form:

aFilledRect .at(verticalCorner) size (5, 200)on(canvas)
aFilledRect .at(horizontalCorner) size (200, 5)on(canvas)

placed within the program’s onMouseClick method. The vertical rectangles created by these construc-
tions are 200 pixels tall and the horizontal rectangles are 200 pixels wide. The resulting drawing
looks fine if the window is exactly 200 by 200, which is the window size we showed in the figures
that illustrated the drawings the program would produce, but they would not look right if the
window was larger. If the window was wider, we would want the program to draw wider horizontal
rectangles. If the window was taller, we would want taller vertical rectangles.

When we write a program, the size of the window is determined by the parameters in
aGraphicApplication . size (...,...) . Thus most of the programs we have written so far specify a
window that is 200 by 200 pixels. However, a programmer may change this value at any time. If the
rest of the program is not changed, then the graphic images in the window may no longer appear in
the correct positions.

There are two ways we can avoid this problem. One is to provide a definition that specifies the
width and height of the window. E.g.

def windowWidth = 200
def windowHeight = 200
object {

inherits aGraphicApplication . size (windowWidth,windowHeight)
... windowWidth windowHeight

}

As long as the programmer is careful to only use the identifiers windowWidth and windowHeight

rather than the literal 200, then the program should continue to work correctly even if windowWidth

and windowHeight were changed.

An alternative way to accomplish this is to write programs that determine the actual size of the
canvas while running and adjust the objects they draw accordingly. We have seen that the canvas
provides a mutator method named clear . It also supports two accessor methods named width and
height which allow a program to determine the dimensions of the drawing area. Like the x and y

methods associated with locations, these methods do not expect any parameter values. To produce
a version of DrawGrid that would work correctly in any size canvas, we would simply replace the
occurrences of the number 200 in the constructions shown above with appropriate uses of accessor
methods to obtain the following code:

aFilledRect .at(verticalCorner) size (5, canvas.height) on (canvas)
aFilledRect .at(horizontalCorner) size (canvas.width, 5) on (canvas)

Exercise 3.3.1 Write a program that draws an X through the canvas using the height and width

accessor methods of the canvas.

58

3.4 Expressions and Statements

It is important to observe that accessor methods serve a very different function than do mutator
methods. A mutator method instructs an object to change in some way. An accessor method
requests some information about the object’s current state.

Simply asking an object for information is rarely worthwhile by itself. We also need to tell Grace
what to do with the information requested. We would never write an instruction of the form:

mousePosition.y

Such an instruction would tell Grace to ask the Location named mousePosition for its y coordinate
but make no use of the information. Instead, we use accessor methods in places within a program
where Grace expects the programmer to describe an object. For example, an accessor method can
be used on the right hand side of an assignment statement to describe the value that should be
associated with the name on the left side of the assignment symbol, as in the statement

lastY := mousePosition.y

or to describe a parameter to a construction as in
var newLocn := aLocation.at(10, mousePosition.y)

or to describe the parameters for another method, like moveTo.

This notion of a phrase that describes an object or value is important enough to deserve a name.
Such phrases are called expressions. We have already seen several different sorts of phrases that
Grace recognizes as examples of expressions.

Where numeric information is needed, we have often explicitly included the numbers to use by
typing numeric literals like “50” and “150” as in the invocation

newLocn := aLocation.at(50,150)

In other situations, accessor method invocations have been used to describe numeric values as in
newLocn := aLocation.at(50,point.y)

Where non-numeric information was needed, we have either used a construction to create the needed
information as in

sun. color := aColor. r(200)g(100)b(0)

or provided a name that was associated with the desired object as in
sun. color := purple

Thus, numeric literals, instance variable names, constructions, and invocations of accessor methods
can all be used as expressions.

In any context where it is necessary to describe an object , Grace will accept any of the forms of

59

expressions we have introduced. In a context where Grace expects the programmer to describe a
color, we can equally well use a name associated with a color, a construction of the form aColor. r

(...) g (...) b (...) , or an invocation of the color accessor method. Grace is, however, picky about the
type of value described by an expression. In a context where Grace expects us to provide a color,
we can’t provide an expression that describes a number or a location instead.

Not all phrases found in a Grace program are expressions. The invocation of a mutator method
such as:

sun.moveBy(0,−5)

is an example of a phrase that is not an expression. This phrase contains subparts that are
expressions, the numeric literals 0 and -5, but is not an expression itself because it does not describe
a value. Instead of describing a value, this phrase instructs Grace to perform an action. Such
phrases are called instructions or statements. Statements instruct Grace to perform actions that
either produce output visible to the user or alter the internal state for the computer in a way that
will affect the future behavior of the program. The body of each method we define in a Grace
program must be a sequence of statements.

We have seen three types of statements at this point. The invocation of a mutator method, such
as

sun.moveBy(0,−5)

is one type of statement. The second type of statement is the assignment statement. It instructs
the computer to perform the action of associating a name with an object or value. Note that the
phrase on the right side of an assignment must be an expression.

The third type of statement we have encountered is the construction. We have used instructions
like:

aText.at(mousePosition) with ("Pressed") on (canvas)

to place graphics on the canvas. We have already stated, however, that a construction is an
expression. Which is it? The answer is both. A construction like the one shown above describes
an object. Therefore it can be used in contexts where expressions are required. At the same time,
the construction of a graphical object involves the action of changing the contents of the display.
Accordingly, the construction by itself can be viewed as a statement.

There are constructions that merely describe an object without having an associated action that
affects any aspect of the state of the program. For example,

aLocation.at(10, 20)

It does not make much sense to use such a construction as a command, because a program that
contained such a command would behave the same if the command were removed. Grace, however,
does not prevent the programmer from writing such nonsense. In fact, Grace will allow the
programmer to use many kinds of expressions as if they were commands by simply placing them
on new lines. In a sensible program, however, the only expressions we have introduced so far that
make sense as commands are constructions of graphical objects.

Exercise 3.4.1 Which of the following statements could actually be useful in a program and which
could not? Explain.

a. sun. color

b. aText.at(point)with("Hello")on(canvas)

c. aColor. r(60)g(60)b(60)

60

Figure 3.3: The sun rises over the horizon

d. myLocation := aLocation.at(50, 50)

3.5 Arithmetic Expressions

Sometimes it is very useful to describe a numeric value to Grace by providing a formula to compute
the number. For example, to describe the x coordinate of a point slightly to the left of the current
mouse position we might say something like:

mousePosition.x − 10

Grace allows the programmer to use such formulae and calls them arithmetic expressions. As an
example of the use of arithmetic expressions, we can make some additional improvements to our
ScrollingSun program.

Using arithmetic expressions involving the width and height methods of the canvas, we can revise
the ScrollingSun program so that it adjusts the size and position of the circle that represents the sun
based on the size of the canvas. To maintain the proportions used in the original program as shown
in Figure 3.3:

• the diameter of the circle should be half the width of the canvas,

• the left edge of the circle should fall one quarter of the width of the canvas from the edge of
the canvas,

• initially, the top of the circle should be placed so that half the circle is visible above the
horizon. To do this, the top of the circle should be one half of its diameter above the bottom
of the canvas.

It would also be appropriate to center the text of the instructions horizontally on the canvas. The
indentation of the text from the left edge of the canvas should be equal to that on the right side.
So, it should be half of the difference between the width of the text and the width of the canvas.

61

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

// location where the sun starts
def startSun = aLocation.at(canvas.width/4, canvas.height − canvas.width/4)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

// Circle representing the sun
def sun = aFilledOval .at(startSun) size (canvas.width/2, canvas.width/2) on (canvas)
sun. color := yellow

var newSunLocn := startSun

// Display instructions
def instructions = aText.at(startInstructions)

with ("Drag the mouse up or down") on (canvas)

// Drag to raise or lower the sun
method onMouseDrag(mousePosition){

newSunLocn := aLocation.at(canvas.width/4, mousePosition.y)
sun.moveTo(newSunLocn)
instructions . isVisible := false

}

// Move sun back to original position when mouse exits window
method onMouseExit(mousePosition){

sun.moveTo(startSun)
}

startGraphics
}

Figure 3.4: Program to make the sun scroll with the mouse

Each of these verbal descriptions can be turned into a formula, which can then be used in the
program. The diameter of the circle, which is the value that should be specified as the width and
height in the FilledOval construction, would be described as

canvas.width/2

The x coordinate value for the left edge of the circle would be given by the formula
canvas.width/4

The y coordinate for the top of the circle would be described as
canvas.height − canvas.width/4

Finally, the x coordinate for the left edge of the instructions should be
(canvas.width − instructions .width) / 2

The complete ScrollingSun program using such formulae is shown in Figure 3.4. In most cases,
we have simply replaced a number used as an expression by the appropriate formula. The only

62

slight complication is the code to center the text. We can not use the width method associated with
the text object until it has been constructed because, unlike with other graphical objects, we do
not specify its width when we construct it. So, when we construct the text we just use 0 as its x
coordinate value. Then, once it exists we use the width method to figure out how big it is. Finally,
we use moveTo to place the text where it belongs.

The arithmetic expressions shown in the preceding examples use only two of the arithmetic
operators, subtraction and division. It is also possible to use multiplication and addition. The symbols
used to indicate addition, subtraction and division are the standard symbols from mathematics: +,
-, and /. Multiplication is represented using an asterisk, *. Thus, to say “2 times the width of the
canvas” one would write2 ∗ canvas.width

The values being operated upon are called operands. In the example above of multiplication,
the operands are 2 and canvas.width.

Other fairly common arithmetic operations are exponentiation, written ∧, and modulus, written
%. Exponentiation raises numbers to a power. For example 3 ∧ 2 evaluates to 9. The modulus
operator finds the remainder when the first number is divided by the second. For example, 14%3

is 2. If you performed a long division of 14 by 3, the quotient would be 4, with a remainder of
2. Unlike many programming languages, Grace does not have an operator that gives the integer
quotient. Instead 14/3 is 4.666667.

The following table summarizes the most commonly used arithmetic operators in Grace.

+ addition

- subtraction

* multiplication

/ division

∧ exponentiation

% modulus

Exercise 3.5.1 Write the begin method for a program that draws two lines that form a cross
(consisting of a horizontal line and a vertical line as shown in Figure 3.5) on the canvas with the
intersection of the two lines in the center of the canvas. The program should draw the cross correctly
no matter what the size of the canvas.

3.5.1 Ordering of Arithmetic Operations

Two of the arithmetic expressions used in the ScrollingSun program shown in Figure 3.4 illustrate
an issue a programmer must be aware of when writing such expressions: the rules used to determine
the order in which operations are performed. The first of these is the expression

(canvas.width − instructions .width)/2

which is used to position the instructions. The second determines the initial y coordinate for the
top of the sun:

canvas.height − canvas.width/4

Both involve a subtraction and a division. The first, however, uses parentheses to make it clear that
the subtraction should be performed first and that the result of the subtraction should be divided
by 2. The correct interpretation of the second expression is not as clear. In fact, Grace will first
divide the width of the canvas by 4 and then subtract the result of this division from the height of

63

Figure 3.5: Drawing desired for Exercise 3.5.1

the canvas. In the absence of parentheses that dictate otherwise, Grace always performs divisions in
an expression before subtractions. Thus, the second formula is equivalent to the formula:

canvas.height − (canvas.width/4)

The rule that division is performed before subtraction is an example of a precedence rule. When
evaluating simple arithmetic expressions, Grace follows two basic precedence rules:

• Perform divisions and multiplications before additions and subtractions. We therefore say
that division has higher precedence than addition but that division and multiplication are of
equal precedence.

• When performing operations of equal precedence (i.e. additions and subtractions or divisions
and multiplications) perform the operations in order from left to right as written.

Parentheses can be used to override these precedence rules as seen in the first example above. Any
part of a formula enclosed in parentheses will be evaluated before its result can be used to perform
operations outside the parentheses.

The operators ∧ and % are not assigned a precedence in Grace, so if they are in an expression
with other operators then parentheses must be included to determine the order of evaluation.

Exercise 3.5.2 What are the values of the following expressions?

a. 4 + 3 * 8 / 2 - 3

b. (4 + 3) * 8 / 2 - 3

c. 4 + (3 * 8) / 2 - 3

d. 4 + 3 * 8 / (2 - 3)

e. (4 + 3) * 8 / (2 - 3)

f. (4 + 3 * 8) / 2 - 3

64

3.6 Numeric Instance Variables

In the previous chapter, we saw that it is sometimes necessary to associate instance variable names
with Locations or other objects to enable one method to communicate information to commands
in another method. Unsurprisingly, it is often useful to associate names with numeric values in a
similar way. We can illustrate this by adding yet another feature to our RisingSun program.

As the real sun rises, the sky becomes brighter and brighter. Suppose we wanted to try to
simulate this in our program. For this example we will return to the original interface where the
user clicks repeatedly to make the sun rise. Now, when the sun is near the bottom of the screen, we
would like the background to be filled with a dark shade of gray. We can do this by constructing a
FilledRect as big as the canvas and setting its color to an appropriate shade of gray. As the user
clicks, we can make the background become lighter by using setColor to replace the original shade of
gray with lighter and lighter shades until it is eventually white.

We have seen that each color is described by a triple of numbers giving the amounts of red,
green, and blue in the color. Shades of gray correspond to triples in which all three values are the
same. The bigger the number used, the brighter the shade. So,

aColor.r(0)g(0)b(0)

describes black,

aColor.r(50)g(50)b(50)

describes a dark shade of gray,

aColor.r(200)g(200)b(200)

would be a fairly light shade of gray and

aColor.r(255)g(255)b(255)

is white.

To control the brightness of the background, we would like to associate an instance variable
name with the number to be used to generate the shade of gray currently desired. We will use the
name brightness for this variable. This name can then be used to construct shades of gray for the
background by using the construction:

aColor.r(brightness)g(brightness)b(brightness)

To use such a name, of course, we must first declare the name and then add assignment statements
to ensure that it is associated with the correct number at each time as the program executes.

n the declaration, we will associate the name brightness with a number corresponding to a dark
shade of gray by including an assignment statement of the form:

var brightness := 50

Each time the user clicks the mouse, we want to associate a larger number with brightness . We can
do this by including the assignment statement

brightness := brightness + 3

65

in onMouseClick. This statement tells the computer to take the current value associated with the
name brightness , add one to it, and then associate the name brightness with the result. The first
time the mouse is clicked, brightness will be associated with the value 50 specified in the declaration.
The result of adding 3 to 50 is 53. So, after the assignment statement is executed, brightness will be
associated with the value 53. The next time the mouse is clicked, Java will add 3 to the new value
of brightness , 53, and set it equal to 56. Thus, each time the mouse is clicked, the value of brightness

will become one greater and the color generated by the construction

aColor.r(brightness)g(brightness)b(brightness)

will become a little bit brighter.
With these details we can complete the program. The code is shown in Figure 3.6.

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

def origin = aLocation.at(0,0)

// sky created with brightness
def sky = aFilledRect .at(origin) size (canvas.width, canvas.height) on (canvas)
var brightness := 50
sky. color := aColor. r(brightness)g(brightness)b(brightness)

// location where the sun starts
def startSun = aLocation.at(canvas.width/4, canvas.height − canvas.width/4)

def sun = aFilledOval .at(startSun) size (100, 100)on(canvas)

// location for the instructions
def startInstructions = aLocation.at(20, 20)

aText.at(startInstructions)with("Please click the mouse repeatedly")on(canvas)

// Each time mouse is clicked, sun rises more and sky brightens
method onMouseClick(point){

sun.moveBy(0,−5)
brightness := brightness + 3
sky. color := aColor. r(brightness)g(brightness)b(brightness)

}

startGraphics
}

Figure 3.6: Using a numeric instance variable

Exercise 3.6.1 What would you expect to happen in LightenUp if you changed the assignment of
brightness to brightness := 200 and then changed the first line in the onMouseClick method
to the following?

66

brightness := brightness − 3

Exercise 3.6.2 What would you expect to happen in LightenUp What happens if you keep clicking
the mouse for a long time? What might go wrong? Run the program and see what happens.

Exercise 3.6.3 Suppose instead of a gray sky in the example, we wanted the sky to start black, but
become a lighter blue each time the mouse is clicked. How would you change the code to make this
happen.

3.7 Displaying Numeric Information

We have seen how we can use the computer’s ability to work with numbers to produce better
drawings on the computer’s screen. Sometimes, however, it is the numbers themselves rather than
any drawing that we really want to see. The main purpose of many computer programs is to perform
numerical calculations. Examples include programs that determine your taxes, determine your GPA,
and estimate the time required to travel from one point to another. Such programs often simply
display the numbers they compute rather than a drawing a graph of some sort on the screen. Even
programs that are not primarily focused on numerical computations often need to display numerical
information. For example, a word processor might need to display the current page number. In this
section we will describe two mechanisms in Grace that can be used to display numerical information.

3.7.1 Displaying Numbers as text

As a very simple first example, let’s make the computer count. You probably don’t remember it,
but at some point in your early childhood you most likely impressed some adult by demonstrating
your remarkable ability to count to 10 or 20 or maybe even higher. To enable the computer to
produce an equally impressive demonstration of its counting abilities, we will construct a program
that will count. It will start at 0 and move on to the next number each time the mouse is clicked.
The current value will be displayed on the computer’s screen.

We have already introduced one mechanism that can be used to display numbers on the screen.
We just didn’t mention that it could be used with numbers at the time. In the very first program in
Chapter 1, we used a construction of the form:

aText.at(clickTextLocation) with ("Click in this window") on (canvas)

and explained that the aText construction requires three parameters:

• the location on the canvas where the information should be displayed, and

• the information to be displayed,

• the canvas.

In all the examples of text constructions we have seen thus far, the second parameter has been a
sequence of characters surrounded by quotes. In fact, the second parameter to aText.at()with()on()

can be any expression that returns a string.
Any object can return a string from an asString method request. We will ensure that each new

object we define has an asString method that returns a string that describes the object. If we do not
define asString ourselves, it will instead return a default string value that may not be very helpful.

In particular, if we define a variable

67

Figure 3.7: A computer counting program before the first click

var theCount := 0;

with the intent of using it to count up from one, and then we execute a construction of the form:
aText.at(aLocation.at(100,100))with(theCount.asString)on(canvas)

Grace will display the current value of the variable theCount, 0, at the point (100,100) in the
program’s window as shown in Figure 3.7.

Of course, displaying the number 0 isn’t counting. The program we want to construct should
start by displaying 0, but the first time the user clicks the mouse, we want to replace 0 by 1. On
the next click, we want to replace 1 by 2 and so on.

In case you didn’t notice, one of the examples considered in this chapter already demonstrates
how to teach a computer to count. In the version of the rising sun program in which the background
became brighter as the sun rose, the operations we performed on the variable named brightness

essentially told the computer to count upwards starting at 50. The instruction that we used to
progress through the different values of brightness was

brightness := brightness + 3

A very similar assignment statement involving the variable theCount:
theCount := theCount + 1;

is what we need to complete the counting program described above.

Such a counting program is shown in Figure 3.8. The body of the onMouseClick method uses
the assignment statement shown above to associate the next counting number with theCount each
time the mouse is clicked. Note that changing the value associated with the variable theCount does
not cause the value displayed by the text object named countDisplay to change. To change the text
displayed, we update the contents of the item. This changes the information displayed by a text
object. Like the second parameter expected in a text construction, this information can be a quoted
sequence of characters or any other expression that returns a string. The statement

countDisplay . contents := theCount.asString

in the onMouseClick method tells Grace to change the information displayed by the text object named
countDisplay that was created earlier to the string corresponding to the current value of theCount.

An alternative to resetting the contents would be to clear the canvas and then construct a new

68

// A program to count as high as you can click
dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

var theCount := 0

def countPosn = aLocation.at(100,100)
def countDisplay = aText.at(countPosn)with(theCount.asString)on(canvas)

method onMouseClick(point){
theCount := theCount+1
countDisplay . contents := theCount.asString

}

startGraphics
}

Figure 3.8: A simple counting program.

text object displaying the new value of theCount. Construction of a new object, however, is a fairly
time consuming process. When possible, it is better to reuse an existing object rather than create a
new one. Accordingly, in an example like this it is preferable to update contents.

————————————————————————————————

There are several other mutator methods that can be applied to text objects. In Chapter
1 we already showed that the attribute isVisible could be reset with text objects. In
addition, the moveBy and moveTo methods can be used to reposition text objects, just as
they can be used with rectangles and ovals. Finally, there are several special mutator
methods for use with text objects. For example, the methods fontSize and fontSize :=

methods can be used to access or change the size of displayed text. For example,
countDisplay . fontSize := 24

could be added after the definition countDisplay if we wanted to increase the size of the
numbers displayed.

————————————————————————————————

3.7.2 Using print

In a program that mixes graphical output with numerical or other textual information, text objects
and the contents := method are the most appropriate tools for displaying textual information. In
programs that only display textual information, there is another tool that is often simpler and more
appropriate, print .

All the output displayed by the Grace programs we have considered so far appears in the pop-up
window associated with the name canvas. These programs can, however, display output in another
window provided by the Grace system. There is no special name that can be used to refer to this

69

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (200,200)

var theCount := 0
def instructionPosn = aLocation.at(20,100)
def instructions = aText.at(instructionPosn)with("Click to make me count")on(canvas)

method onMouseClick(point){
theCount := theCount+1
print (theCount)

}

startGraphics
}

Figure 3.9: Counting in the Grace console

window from within your program. It is simply known as the output or console window , and is
found in the area to the right of the program text.

The console window is more limited than the canvas in that it can only be used for text. On the
other hand, it is more convenient for the display of text than is the canvas.

To display information in the console you use a method named print . This method takes a single
parameter specifying the information to be displayed. Any expression that evaluates to a string can
be used as a parameter to print . In particular, you can certainly use a string surrounded by double
quotes or the results of sending an asString method request to a number (or any other object, for
that matter).

In fact, print is a special method in that if you evaluate it with an argument, and that argument
is not a string, it applies the asString method request before printing the result. As a result,

print (countDisplay . asString)

behaves exactly the same as
print (countDisplay)

A revised version of our counting program that uses the Grace console to display values as it
counts is shown in Figure 3.9. The only text this version displays on the canvas is a message telling
the user to click in order to make the program count. This will be displayed instead of the number
0 when the program first starts. The first time the user clicks, 1 is placed in the Grace console by
the print in the onMouseClick method. Each succeeding click will place another value in the console
window.

When print is used, you do not have to provide coordinates to specify where the text should be
displayed. The Grace console window displays the information you provide to these methods much
as text might be displayed in a word processor’s window. Each time your program executes a print ,
the text specified is placed on a new line in the Grace console window, below any text placed there
by previous uses of print .

Once the console window fills up, the older text scrolls off the top of the window leaving the
newer lines visible. A scroll bar is provided so that a person running your program can look at the
older items if desired. Figure 3.10 shows how both the canvas and the Grace console window might

70

Figure 3.10: Counting using the Grace console

look after this program is run and its user clicks 25 times.

3.7.3 Mixing Text and Numbers

Often, a number displayed all by itself has little meaning. The difference between just displaying “3”
and displaying “Strike 3” or “3 p.m.” or “Line 3” can be quite significant. Accordingly, in many
programs rather than just displaying a number on the screen it is desirable to display a number
combined with additional text that clarifies its meaning. Luckily, this can be done easily in Grace
with both text objects and print .

When specifying the information to be displayed in a text object or on the Grace console, we can
combine quoted text with numeric information by enclosing the numeric information in curly braces:
“{...}”. Suppose, for example, that we wanted our counting programs to display a message like “You
have clicked 3 times” instead of just displaying 3 on the third click. For the version that uses text
objects to place the information on the screen, we could accomplish this by replacing the command

countDisplay . contents := theCount.asString

shown in Figure 3.8 with the command
countDisplay . contents := "You have clicked {theCount} times"

When the string is evaluated, theCount is evaluated, converted to a string (implicitly using asString)
and that string is inserted into the surrounding string.

Similarly, for the print version shown in Figure 3.9 we could replace the command
print (theCount)

with the command
print ("You have clicked {theCount} times");

In fact, you can place any expression at all in the curly braces inside a string. When the string
is evaluated, the expression in curly braces is evaluated, converted to a string using asString , and
then inserted into the string.

When Grace sticks together bits of text, it doesn’t think about things like words. It just sticks
the letters and digits it is given together. This means you have to include all the characters you

71

want displayed, including any spaces. If you look carefully at the print command shown above, you
will notice that there is a space before the open brace “” and before the close brace “”. If these
were not included, Grace would display the text

You have clicked3times

instead of displaying
You have clicked 3 times

as desired.

Exercise 3.7.1 What output would you expect from the following statements? Assume count is
34.

a. print("The count is: count - 3")

b. print("The count is: {count} - 3")

c. print("The count is: {count -3}")

Exercise 3.7.2 Suppose you are trying to write a simple program to help someone practice the
multiplication tables. The program repeatedly displays a message of the form:

What is 5 x 9?

in a Text object named question that is created in the program’s begin method. The program uses two
variables named factor1 and factor2 that are assigned randomly generated numbers between 0 and 9
to determine which question to display. For example, the question shown above would be displayed if
factor1 equaled 5 and factor2 equaled 9.

Write the statement needed to update the message displayed by question after new values for
factor1 and factor2 are chosen. (Don’t worry about how the user tells the program the correct
answer.)

3.8 Random numbers

“Pick a number. Any number. ...”

You might expect to hear this phrase from the hawker at a carnival game table. You might
not expect it to be a useful instruction to give a computer within a Grace program, but just the
opposite is true. There are many programming contexts in which it is handy to be able to ask the
computer to pick a random number for you. Obvious examples are game programs. Programs that
deal cards, simulate the tossing of dice, or simulate the spinning of a roulette wheel all need ways of
picking items randomly. In addition to game programs, there are many programs that simulate the
behavior of real systems for practical purposes that need ways to incorporate the randomness of the
real world in their calculations. With this in mind, Grace and most other programming systems
include what are called random number generators.

The method randomIntFrom(m)to(n) returns a randomly selected integer between m and n, inclusive.
Thus evaluating randomIntFrom(7)to(12) will return a randomly chosen integer from 7 to 12, inclusive.
That is, it will return any of 7, 8, 9, 10, 11, or 12, with each occurring equally likely.

Suppose that you wanted to write a program to simulate a board game in which at each turn the
player rolls two dice. Our method for generating random integers can be used to generate numbers

72

Figure 3.11: Sample message drawn by dice simulation program

just like a single die.1 To illustrate the use of this, we will construct a simple program that simulates
the rolling of a pair of dice each time the mouse is clicked.

When the user clicks the mouse, we need to calculate the new values of the dice. We will provide
two variables, die1 and die2, which will each be assigned a value generated by our expression above
that supplies random integers between 1 and 6.

The complete code of a simple program to simulate rolling two dice is shown in Figure 3.12. A
sample of the program’s output is shown in Figure 3.11.

Let’s talk through the code to make sure you understand why each piece is there. As usual, we
are working in the objectdraw dialect. In order to show all of each text item we set the window
with the program output to be 300 pixels wide rather than the 200 we have used before. The height
remains at 200 pixels.

We then define the two location promptLocation and resultLocation where we will be displaying
text. We will generally place definitions like this early in our programs. Putting them up top makes
it easy to find and change them if we don’t like the way the output appears on the canvas. For
similar reasons, we introduce the definition of numSides to name the number of sides on each die.
If we were to change to a different size die (e.g., with 12 sides), a change in this one place in the
program would automatically fix the rest of the code.

Now we create a text object to display the instructions to the user. We do not bother to give it
a name as we will never need to refer to it again in the program. However, we do give the name
result to a text object whose contents are initially an empty string, i.e., a string of length 0. We
will update its contents in the onMouseClick method to give us information about the new values of
the dice.

We also declare the variables die1 and die2, but don’t yet assign them a value as we will not roll
the dice until the user clicks the mouse.

The onMouseClick method evaluates our complex arithmetic expression twice to get two new
random numbers, assigning them to our two variables. We then update result to show the values of
the dice. Recall that the expressions within “{ ... }” will be evaluated and then have their string
equivalents inserted into the surrounding string.

1The English word for the little cubes you roll while playing many board games has an irregular plural form. If
you have several of these cubes, you call them dice. If you have just one then it is a die.

73

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (300,200)

// positions of text to be displayed
def promptLocation = aLocation.at(30,30)
def resultLocation = aLocation.at(30,100)

// How many sides our dice have
def numSides = 6;

// A Text message giving instructions to the player
aText.at(promptLocation)with("Click to make me roll the dice")on(canvas)

// Display a prompt and create the Text used to display the results
def result = aText.at(resultLocation) with ("") on (canvas)

// The values of the two dice after a roll
var roll1
var roll2

// Roll the dice with each click
method onMouseClick(point) {

roll1 := randomIntFrom(1)to(numSides)
roll2 := randomIntFrom(1)to(numSides)
result . contents :=

"You rolled a {roll1} and a {roll2} for a total of { roll1 + roll2 }"

}

startGraphics
}

Figure 3.12: Simulating the rolling of a pair of dice

74

Exercise 3.8.1 Write a program that draws a rectangle named box at the location given by (50,
50). The box should be 50 pixels wide and the height of the box should be determined by an expression
involving random numbers that generates values for the height between 10 and 100 pixels. The height
of box should change each time the mouse is clicked.

3.9 Summary

Early applications of computers involved scientific and engineering problems that required large
amounts of numerical computation. The first computers clearly earned the name “computer”. When
using a word processor, reading your email, or browsing the web, it is easy to forget that computers
perform arithmetic computations. Even in programs that do not appear to involve numbers, however,
numerical computations continue to play a role. For example, a word processor has to do arithmetic
just to determine how many words will fit on a line.

In this chapter, we have explored a few of the mechanisms Grace provides to perform numerical
computations. We explored the differences between statements and expressions in Grace programs.
Statements are phrases in a program that instruct the computer to perform an action that will
change the visible state of the computer or change the value associated with some variable name.
Expressions are phrases that describe a value or object to be used in the program. We have seen
that Grace recognizes several forms of expressions: literals like “12”, variable names, constructions,
invocations of accessor methods, and arithmetic formulae involving the operations of addition,
subtraction, multiplication, division, exponentiation, and modulo. We also saw how to use a method
returning random numbers to generate numbers in a given range.

We showed how to instruct Grace to produce textual output that included numerical information
using both text objects and the print method. Text objects are used when such information is to
be included in the display of a program that also produces graphical output. The print method
provides a simpler mechanism for producing text output that is appropriate for programs that only
produce textual output in the Grace console.

75

76

Chapter 4

Making Choices

To write interesting programs we must have a way to make choices in Grace. For example, we might
need to perform different instructions depending on whether a user has clicked inside a particular
rectangle. In this chapter we show how to make choices in Grace using the if statement.

Conditional statements like the if statement are programming constructs capable of choosing
between blocks of code to execute. These statements provide enormous expressive power to
programmers, and yet are very easy to use and understand because they mimic the way we think.
For instance, the following form a conditional statement in English:

“If it’s sunny outside then we will play frisbee, otherwise we will play cards.”

An example of a conditional statement that is a bit more relevant to our concerns with
programming might be:

“If the mouse location is contained in the rectangle then display message “success”.
Otherwise display message “missed”.”

In Grace, the if statement is the most commonly used conditional statement. It comes in a
variety of forms that we will explore, each of which is useful for certain situations. With the help of
conditionals we will write programs to determine a win or loss in the game of craps and to figure
out what to do on a weekend based on the weather and your finances.

After presenting a brief example illustrating the use of the if statement, we formally introduce
several of its variations that will allow us to handle more complex situations. We also introduce the
boolean data type for expressions that can be either true or false. Finally, we provide advice on how
to use conditionals clearly and effectively so that your programs can be understood correctly by the
Grace compiler and, more importantly, by other programmers.

4.1 A Brief Example: Using the if Statement to Count Votes

We illustrate the use of conditionals with a simple example of a program to count votes in an
election. To accomplish this we will divide the program’s canvas in half vertically so that the left
and right sides represent candidates A and B respectively (see Figure 4.1). A mouse click on either
side will be treated as a vote for that half’s candidate.

Recall the program ICanCount in Figure 3.8, which keeps track of the number of times the user
has clicked the mouse. The code for its onMouseClick method is given below:

77

Figure 4.1: Screen shot of Voter program.

method onMouseClick(point){
theCount := theCount+1
print (theCount)

}
Whereas this method simply counts all mouse clicks on the canvas, by using the if statement our
voting program’s onMouseClick method will be able to discriminate between votes for candidate A
and B.

The code for program Voting is given in Figure 4.2. The constructs used should be familiar by
now. The program starts by defining some x and y coordinates and some locations for the text
objects to be created. An advantage to using definitions to provide names for coordinates is that if
they need adjusting, it is easy to modify them in one place while the results show up everywhere.

The program creates four new text objects, the top two of which display voting instructions while
the bottom two display the current tally for each candidate. The last line of the before onMouseClick

draws the vertical line dividing the canvas.

The onMouseClick method, on the other hand, contains a new programming construct. The if

statement is used to determine which candidate gets each vote and then updates the appropriate
Text object to display the new total. To decide who receives each vote, the program compares the
x coordinate of the location of the mouse click to that of the middle of the canvas. Note that
canvas.width/2 refers to the x coordinate of the middle of the canvas.

The if statement allows the programmer to make choices about which statements are executed
in a program based on a condition, an expression whose value is either true or false. In the sample
program, when the mouse is clicked the program must determine whether to give a vote to candidate
A or B. The condition is whether the x coordinate of the mouse click, obtained by evaluating
point .x, is less the x coordinate of the middle of the canvas. The condition is written in Grace as

78

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (600,200)

def DISPLAY A X = 5 // x−coordinate of location of A’s votes
def DISPLAY B X = canvas.width/2 + DISPLAY A X // x−coordinate of location of B’s votes

def DISPLAY Y TOP = canvas.height/2 − 20 // y coordinates of instructions
def DISPLAY Y BOT = canvas.height/2 + 20 // y coordinates of vote counts

// locations for instructions and vote counts
def instructionsALocn = aLocation.at(DISPLAY A X, DISPLAY Y TOP)
def countALocn = aLocation.at(DISPLAY A X, DISPLAY Y BOT)
def instructionsBLocn = aLocation.at(DISPLAY B X, DISPLAY Y TOP)
def countBLocn = aLocation.at(DISPLAY B X, DISPLAY Y BOT)

// locations of top and bottom of separating line
def topLine = aLocation.at(canvas.width/2,0)
def bottomLine = aLocation.at(canvas.width/2,canvas.height)

var countA := 0 // current counts of votes for A and B
var countB := 0

aText.at(instructionsALocn) with ("Click on the left side to vote for candidate A.")
on (canvas)

aText.at(instructionsBLocn) with ("Click on the right side to vote for candidate B.")
on (canvas)

// Display number of votes for A and B
def countAText = aText.at(countALocn) with ("So far there are {countA} votes for A.")

on (canvas)
def countBText = aText.at(countBLocn) with ("So far there are {countB} votes for B.")

on (canvas)

// Line separating voting spaces
aLine.from(topLine) to (bottomLine) on (canvas)

// Update votes and display vote counts
method onMouseClick(point) {

if (point .x < (canvas.width/2)) then {
countA := countA + 1
countAText.contents := "So far there are {countA} votes for A."

} else {
countB := countB + 1
countBText.contents := "So far there are {countB} votes for B."

}
}

startGraphics
}

Figure 4.2: Code for Voter program.

79

point .x < canvas.width/2. If the condition is not satisfied (i.e., if point .x is greater than or equal to
canvas.width/2) then the code after the else keyword is executed.

The two lines of code following the line containing the if are grouped together by a pair of
matching curly braces. A sequence of statements surrounded by curly braces in this manner is
called a block . Similarly, the two statements immediately following the else also form a block. If
the condition of an if statement is true, the block of statements immediately after the condition is
executed. Otherwise, the block immediately after the else is executed.

Exercise 4.1.1 What are the conditions in the following statements? For example, in the statement,
“When it is cold outside, I wear a hat,” the condition is “it is cold outside”.

a. When it is Tuesday, I have piano lessons.

b. Since today is Halloween, it must be October.

c. If Bobby says yes, we will go to the prom.

d. Yesterday’s game determined the wild card, so if the Red Sox won, they made it to the playoffs.

4.2 The if Statement

Now that we have seen the if statement in action, let’s carefully examine its syntax and meaning.

The code in the Voting example given in Figure 4.2 contains a form of conditional statement
called the if−else statement. Its syntax is:

if (condition}) {
if−part // statements to be executed when condition is true

} else {
else−part // statements to be executed when condition is false

}
The text condition in the syntax template represents an expression whose value is true or false. The
phrases if−part and else−part represent sequences of Grace statements. We’ve included comments to
make it clear when each of these sequences of statements is executed, even though these comments
are not part of the formal syntax.

When an if−else statement is executed, the computer first determines whether condition is true.
If so, it executes the statements in the block of code surrounded by the first pair of curly braces,
“{” and “}”, called the if−part, and then skips over the rest of the statement. Otherwise (i.e., if
condition is false), it skips over the if−part and will instead execute the block of statements after
the else keyword, called the else−part. Exactly one of the two blocks of code is processed when the
if−else statement is executed. When that block is completed, execution resumes immediately after
the if−else statement. This execution sequence is illustrated in Figure 4.3.

The following example shows how execution resumes with the statements that follow an if−else

statement. Suppose we want to modify our Voting program so that it always displays the total
number of votes. Let totalText be defined as a text object earlier in the program. Figure 4.4 shows
a revised version of onMouseClick that displays the current vote total. Each time the user clicks on
the canvas, the line updating the contents of infoTotal will be executed regardless of which half of
the screen the mouse was clicked on.

80

Figure 4.3: Semantics of the if−else statement.

// Update votes and display vote counts
method onMouseClick(point) {

if (point .x < (canvas.width/2)) then {
countA := countA + 1
countAText.contents := "So far there are {countA} votes for A."

} else {
countB := countB + 1
countBText.contents := "So far there are {countB} votes for B."

}
totalText . contents := "Votes so far: {countA + countB}"

}

Figure 4.4: Code to display individual and total vote counts

81

Figure 4.5: Semantics of the if with no else .

There are many situations in which we don’t need an else−part. Fortunately, there is a simple
variant of the if−else statement, the if statement, which does not have the else keyword or the
else−part.

if (condition) {
if−part // statements to be executed when condition is true

}
If condition is true, then the if−part is executed as before. If it is false, however, the program

simply moves on to the next statement after the if−part because there is no else−part to execute.
The execution sequence is illustrated in Figure 4.5.

Exercise 4.2.1 Write the following statements as if-else or if statements. For example, the
statement, “On Mondays I ride my bike to class. On other days, I walk.” can be rewritten as “If it
is Monday, I ride my bike to class. Else, I walk.”

a. On Sunday I eat pancakes. On other days, I eat cereal.

b. I go to class on weekdays, but on weekends, I watch movies.

c. In the summer I always wear sandals, but during the other seasons, I wear sneakers.

d. If it is raining, I bring an umbrella.

4.2.1 Example: Using the if Statement with 2-D Objects

Suppose we want to write a program that begins by displaying a square on the canvas. If the user
clicks inside the square then the computer moves the square 50 pixels to the right. If the click is not
inside the square, nothing happens.

How can we determine if a point is inside a square? We could compare the coordinates of the
point to the locations of the left, right, top, and bottom edges of the square. However, such tests

82

are so common that all of the two dimensional geometric objects (e.g., filled and framed rectangles
and ovals provide the accessor method contains that does this for us.

For example, let square be a variable referring to a framed rectangle, and let point refer to a
location. Then the expression square . contains(point) evaluates to true if the object held in square

contains the point, and false otherwise.

For the sake of brevity we will only write out the onMouseClick method of this program. We
assume that square and xOffset have been declared and initialized elsewhere.

method onMouseClick(point) {
if (square . contains(point)) {

square .move(xOffset, 0)
}

}
An English translation of the above method would read: “If the square contains the point where

the mouse was clicked then tell the square to move to the right by xOffset pixels. Otherwise do
nothing.” (Of course, the computer code doesn’t say, “Do nothing.” Instead it simply omits the
else−part.)

We will present further variations of if statements later in this chapter, but first we will explore
the kinds of expressions that can be used to form the condition part of these statements.

Exercise 4.2.2

a. What would happen if you clicked the mouse inside square given the onMouseClick method shown
below? Assume xOffset is 60.

method onMouseClick(point) {
if (square . contains(point)) {

square .move(xOffset, 0)
}
square .move(−xOffset/2, 0)

}

b. What would happen with the above code if you clicked the mouse outside square.

c. What would happen if you now clicked the mouse outside of square and onMouseClick was
changed to the following?

method onMouseClick(Location point) {
if (square . contains(point)) {

square .move(xOffset, 0)
} else {

square .move(−xOffset/2,0)
}

}

4.3 Understanding Conditions

Comparison operators like “<” are used in expressions that evaluate to either true or false, called
boolean expressions. Grace contains several comparison operators. They include:

< , > , ==, <=, >=, !=

83

We must use == to test for equality because = has already been used for definitions. Because 6=
isn’t available on all keyboards, the symbol != (read as “does not equal”) stands for inequality.
Because keyboards also do not always include the symbols ≤ or ≥, Grace uses the combinations <=

and >= in their places.
Be very careful not to confuse “=” and “==”. The first is only used in definitions, while the

second is used only for comparisons. Keep in mind as well that “:=” is used for assignments to
variables.

Using these comparison operators, we can write x > 4, y != (z+17), and (x+2)<= y. Depending on
the values of the variables, each of these expressions will evaluate to either true or false. Comparison
operators are not assigned a precedence, so expressions being compared must be surrounded by
parentheses unless the expression is just a simple identifier or method request. Thus in the examples
above, z+17 and x+2 are surrounded by parentheses.

Suppose the current value of x is 3, y is 6, and z is -10. Here are the results of evaluating the
above expressions:

• x > 4 is false because 3 is not greater than 4.

• y != (z+17) is true because 6 is different from -10+7.

• (x+2)<= y is true because 3+2 is less than or equal to 6.

Exercise 4.3.1 Suppose the current value of x is 2, y is 4, and z is 15. Determine whether each
of the following conditions evaluates to true or false.

a. (x + 2) < y.

b. (z − 3 ∗ x) != (y + 5).

c. (x ∗ y) == (z − 9).

d. z >= (3 ∗ y).

4.3.1 Using Boolean Values

Grace expressions can have the values true and false. Just as one can write down integer values
directly as 17, −158, or 47, we can write down boolean values directly in Grace as true or false . We
can also declare variables that can hold boolean values.

There are a large number of expressions in Grace that return boolean values. As we have just
seen, combining two integer-valued expressions with one of the comparison operators, <, >, <=,
>=, ==, and !=, results in a boolean value. We have also seen the method contains that returns a
boolean value.

If ok is a variable holding boolean values and x represents a number then the following are valid
statements:

ok := true
ok := (x >= 3)

In each case the expression of the right hand side evaluates to a boolean value and hence can be
assigned to a boolean variable.

We will use both the contains method and boolean variables in the implementation of a new
program WhatADrag. The complete code listing for this program is given in Figure 4.6. The program

84

dialect "objectdrawDialect"

object{
inherits aGraphicApplication . size (400,400)
// create box
def startPosn = aLocation.at(200,100)
def box = aFilledRect .at(startPosn) size (30,30) on (canvas)

var lastPoint // point where mouse was last seen

// whether the box has been grabbed by the mouse
var boxGrabbed := false

// Save starting point and whether point was in box
method onMousePress(point) {

lastPoint := point
boxGrabbed := box.contains(point)

}

// if mouse is in box, then drag the box
method onMouseDrag(point) {

if (boxGrabbed) then {
box.moveBy(point.x − lastPoint .x, point .y − lastPoint .y)
lastPoint := point

}
}

startGraphics
}

Figure 4.6: Code for dragging a box.

begins by displaying a box on the screen. If the user presses the mouse down while it is pointing
inside of the box. and then drags the mouse, the box will follow the mouse on the canvas. If the
mouse is not pointing in the box when the mouse button is pressed, then dragging the mouse should
have no effect, even if the mouse happens to cross the box at some point during the drag.

Let’s look at the code in the mouse-handling methods to see how we can program this behavior.
As soon as the mouse button is pressed, the onMousePress method is executed. The first assignment
in onMousePress,

lastPoint := point

results in saving the current location of the mouse (as held in parameter point) as the value of
variable lastPoint . The location is saved so that it can be used when onMouseDrag is executed later.

The second assignment in onMousePress,
boxGrabbed := box.contains(point)

determines and then remembers whether the box contained the point where the mouse was initially
pressed. Because the result of evaluating box.contains(point) is a boolean value, boxGrabbed will
represent either true or false. This value of boxGrabbed, which reflects whether the user actually
pressed the mouse down inside box, will be used in onMouseDrag to determine whether the box should

85

Figure 4.7: Three stages of dragging a rectangle.

be moved.

As usual, the onMouseDrag method will be executed when the user drags the mouse. At that
time the values of the variables boxGrabbed and lastPoint become relevant.

If the value of boxGrabbed is true, box will be moved by the distance between the last location of
the mouse, saved in lastPoint , and the current position, held in point. The distance in each of the
horizontal and vertical directions is needed to actually perform the move. The horizontal and vertical
distances are obtained by evaluating point .x − lastPoint .x and point .y − lastPoint .y, respectively.

Figure 4.7 illustrates three stages of dragging a box in program WhatADrag. In the leftmost
picture, the mouse button has been pressed with the mouse inside the rectangle. After the execution
of onMousePress, the location of the mouse is stored in the instance variable lastPoint . In the middle
picture, the mouse has been dragged down and to the right, and onMouseDrag has just begun
execution. The current location of the mouse is held in the parameter point, but the if statement
has not yet been executed. The rightmost picture shows what has happened immediately after
the move message has been sent to box in the if statement during the execution of onMouseDrag.
The rectangle has been dragged to the right and down by the difference between the x coordinates
and by the difference between the y coordinates of point and lastPoint . The update of the value of
lastPoint to the location held in point is not shown.

Exercise 4.3.2 Rather than using a variable to recall whether we clicked on the box, we might have
written a condition that tested to see if box contained point each time the mouse was dragged as
shown below.

method onMouseDrag(point) {
if (box.contains(point)) then {

box.move(point.x − lastPoint .x,
point .y − lastPoint .y)

lastPoint := point
}

}
This would not quite work as desired. On the other hand, replacing the condition in the if statement
with box.contains(lastPoint) would produce a program with exactly the same behavior as the version

86

that used the variable boxGrabbed. Explain why the version using point as a parameter to contains

would not work. In what circumstances and how does the other one behave differently?

Exercise 4.3.3 Suppose we replace the method onMouseDrag in program WhatADrag by the following
code:

// if mouse is in box, then drag the box
public void onMouseDrag(Location point) {

if (boxGrabbed) then {
box.moveTo(point)

}
}

This is simpler than the code in Figure 4.6. For example, we no longer need to keep track of lastPoint .
However, it does not result in as nice behavior. Explain why!

Exercise 4.3.4 Suppose the statement lastPoint := point inside of method onMouseDrag in Figure
4.6 was placed after the end of the if statement rather than inside the if−part. How would this
change the appearance on the screen during execution?

4.4 Selecting Among Many Alternatives

The if−else statements discussed earlier in this section are particularly suitable when we have to
choose between executing two different blocks of statements at some point in a program. However,
sometimes there are more than two alternatives that have to be considered.

As a simple example, consider how to assign letter grades based on numeric scores on an
examination. Scores greater than or equal to 90 are assigned an “A,” scores from 80 to 89 are
assigned a “B,” scores from 70 to 79 are assigned a “C,” and those below 70 are assigned “no credit.”
Suppose that a variable score of type int contains the numeric score of a particular examination.
We would like to display the appropriate letter grade in a Text item, gradeDisplay. In this situation
we have not just two, but four different possibilities to worry about, so it is clear that a simple
if−else statement is insufficient.

Grace allows us to extend the if−else statement for more than two possibilities by including one
or more elseif clauses in an if statement. Thus we can display the appropriate grade using the
following statement:

if (score >= 90) then {
gradeDisplay . contents := "The grade is A"

}
elseif (score >= 80) then {

gradeDisplay . contents := "The grade is B"

}
elseif (score >= 70) then {

gradeDisplay . contents := "The grade is C"

}
else {

gradeDisplay . scontents := "No credit is given"

}
When we execute this if statement, the computer first evaluates the boolean expression score

>= 90. If that is true, an “A” will be displayed and execution will continue after the last else−part

87

of the statement. However, if it is false the program will evaluate the next boolean expression,
score >= 80. If that is true, a grade of “B” will be displayed and execution will continue after the
last else−part. If not, the expression score >= 70 will be evaluated. If that is true then a grade of
“C” will be displayed and execution will continue after the else−part. Otherwise, the statement in
the else−part will be executed and a grade of “no credit” will be displayed.

When checking to see if the student should be given a “B,” why didn’t we also have to check
whether score < 90? The reason is that to get to the condition score >= 80, the previous test,
score >= 90, must have already failed. That is, we only execute the elseif clauses if score is less
than 90. The same reasoning shows that we do not need to check if score < 80 when we determine
whether to give a “C” as the grade. We can always count on the fact that the conditions within
the if−else statements are evaluated sequentially, and therefore that all previous tests in the if

statement have failed before determining whether to execute the next block.
We can summarize the execution of an if statement including elseif ’s as follows:

• Evaluate the conditions after the if s and elseif s in order until one is found to be true.

• Execute the statements in the block following that if or elseif and then resume execution
with the first statement after the entire if or elseif statement.

• If none of the conditions is true and there is an else−part, then execute the statements in the
else−part. If there is no else−part, don’t execute any of the statements in the if statement.

• Finally, continue execution with the first statement after the if statement.

If there is an else clause in an if statement, then it must be the very last part of the if . That is,
no further elseif ’s are allowed after a plain else clause.

Exercise 4.4.1 What is the output when the following pieces of code are executed? Why does the
output of the three pieces of code differ? Assume hamburgerPrice is 7.

a.
if (hamburgerPrice < 2) then {

print "This hamburger is super cheap."

} elseif (hamburgerPrice < 4) then {
print "This hamburger is inexpensive."

} elseif (hamburgerPrice < 6) then {
print "This hamburger is fairly inexpensive."

} elseif (hamburgerPrice < 8) then {
print "This hamburger is moderately priced."

} elseif (hamburgerPrice < 10) then {
print "This hamburger is pricey!")

} else {
print "This hamburger is super expensive!"

}

if (hamburgerPrice >= 10) {
print "This hamburger is super expensive."

} elseif (hamburgerPrice < 10) then {
print ("This hamburger is pricey!"

} elseif (hamburgerPrice < 8) then {

88

print ("This hamburger is moderately priced."

} elseif (hamburgerPrice < 6) then {
print ("This hamburger is fairly inexpensive."

} elseif (hamburgerPrice < 4) then {
print ("This hamburger is inexpensive."

} else {
print ("This hamburger is super cheap!"

}

b.c.
if (hamburgerPrice < 2) then {

print ("This hamburger is super cheap.")
} if (hamburgerPrice < 4) then {

print ("This hamburger is inexpensive.")
} if (hamburgerPrice < 6) then {

print ("This hamburger is fairly inexpensive.")
} if (hamburgerPrice < 8) then {

print ("This hamburger is moderately priced.")
} if (hamburgerPrice < 10) then {

print ("This hamburger is pricey!")
} if (hamburgerPrice >= 10) then {

print ("This hamburger is super expensive!")
}

4.5 More on Boolean Expressions

The if−else statement in the Voting program at the beginning of this chapter was sufficient because
there were only two candidates to consider when assigning a new vote. However, for more than two
candidates the elseif clause introduced in the last section becomes necessary.

In the next example our program must choose between 3 candidates, A, B, and C, who each
have been allotted a vertical third of the canvas. We will not rewrite the entire program here, but
will instead focus on the onMouseClick method.

Let leftSeparator and rightSeparator be constants representing the x coordinates of the vertical
lines that divide the canvas into the three pieces. The variables countA, countB, and countC will keep
track of the number of votes for the three candidates. Here is the code:

// Update votes and display vote counts for 3 candidates
method onMouseClick(point) {

if (point .x < leftSeparator) { // clicked in left section
countA := countA + 1
infoA. contents := "So far there are {countA} votes for A."

}
elseif (point .x < rightSeparator) { // clicked in center

countB := countB + 1
infoB. contents := "So far there are {countB} votes for B."

}
else { // clicked in right section

countC := countC + 1
infoC. contents := "So far there are {countC} votes for C."

}
}

89

Figure 4.8: Voting for four candidates.

When determining whether the click was in the center section, why didn’t we have to check that
point .x was to the right of leftSeparator ? As with our earlier example, the reason is that to even get
to the second condition we know that the test point .x < leftSeparator must have failed (that is, it
must have evaluated to false).

This same style solution works for determining whether clicks are in 4 or more vertical strips.
However, once we get to four candidates it might make sense to divide the screen both vertically
and horizontally rather than into 4 narrow, vertical strips as shown in Figure 4.8. We will count
clicks in the upper-left hand corner as votes for A, in the upper-right hand corner as votes for B,
lower-left for C, and lower-right for D. Thus to be a vote for A, the location where the user clicked
must be both above the horizontal line and to the left of the vertical line. How can we write this as
a condition?

In Grace we use the and operator, &&, between two boolean expressions to indicate that both
must be true for the entire expression to be true. For example, we can ensure that x is positive and
y is negative by writing (x > 0) && (y < 0). While it would be convenient, computer programming
languages do not usually allow us to combine two inequalities, as in the expression 1 <= x <= 10.
Instead we must write it out as (1 <= x)&& (x <= 10). Note that all the parentheses are necessary
as otherwise Grace wouldn’t know how to group the operations.

The && is an example of a logical, or boolean, operator in Grace. Just as the “+” operator on

90

numbers takes two number values and returns a number, boolean operators take two boolean values
and returns a boolean value. The && (and) operator returns true exactly when both boolean values
are true. Thus (x > 0) && (y < 0) will be true only if both x is greater than 0 and y is less than 0.

In order to ensure that point is in the upper-left corner of the canvas we would need to write:
if ((point .x < midX) && (point.y < midY)) then { // upper−left

...
}

The if−part is only executed if both point .x < midX and point .y < midY. If either one of those boolean

expressions is false, then the entire condition evaluates to false and the if−part is not executed.

Here is the complete code to assign votes to four candidates:
// Update votes and display vote counts

method onMouseClick(point) {
if (point .x < midX && point.y < midY) then { // upper−left

countA := countA + 1
infoA. setText("So far there are " + countA + " votes for A.")

}
elseif (point .x >= midX && point.y < midY) { // upper−right

countB := countB + 1
infoB. setText("So far there are " + countB + " votes for B.")

}
elseif (point .x < midX && point.y >= midY) { // lower−left

countC := countC + 1
infoC. setText("So far there are " + countC + " votes for C.")

}
else { // lower−right

countD := countD + 1
infoD.setText("So far there are " + countD + " votes for D.")

}
}
Just as Grace uses && to represent the logical and operation, it uses || to represent the logical or

operator. Thus x < 5 || y > 20 will be true if x < 5 or y > 20. In general, if b1 and b2 are boolean
expressions, then b1 || b2 is true if one or both of b1 and b2 are true.

English contains both an inclusive and an exclusive “or”. The inclusive “or” evaluates to true if
either or both operands are true. The exclusive “or” evaluates to true only if exactly one of the
operands is true. The || operator represents the inclusive “or”. Using the “not” operator, !, defined
below, you can get the effect of the exclusive “or” on boolean expressions b1 and b2 by writing
(b1 || b2) && !(b1 && b2), which states that one of b1 and b2 is true, but not both.

A good example illustrating the use of the or operation is determining whether someone playing
the game of craps has won or lost after his or her first roll of the dice. The “shooter” in craps
throws two dice. If the numbers on the faces of the dice add up to 7 or 11, then the shooter wins. A
sum of 2, 3, or 12 results in an immediate loss. With any other result, play continues in a way that
will be described later.

The if statement below has three branches that encode the relevant outcomes of the first roll of
the dice. The value of status is simply a text object that, as usual, has been created in the object.

if ((roll == 7) || (roll == 11)) then { // 7 or 11 wins on first throw
status . contents := "You won!"

} elseif ((roll == 2) || (roll == 3) || (roll == 12)) then { // 2, 3, or 12 lose on 1st throw
status . contents := "You lose!"

91

operator meaning

&& and

|| or

! not

== equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

Figure 4.9: A summary of the boolean and comparison operators in Grace

} else { // play must continue
status . contents := "The game continues"

}
The if portion determines if the player has won by checking if the roll was 7 or 11. The elseif

portion determines if the player has lost by checking if roll was 2, 3, or 12. Finally the else portion
is executed if further rolls of the dice will be required to determine whether the player wins or loses.

The last boolean operator to be introduced here is !, which stands for “not”. For example, the
expression !box.contains(point) will be true exactly when box.contains(point) is false, i.e., when
box.contains(point) is not true.

Although we can use ! with equations and inequalities, it is usually clearer to rewrite the
statement using a different operator. For instance, !(x == y) is more simply written as x != y, and
!(x < y) is simplified to x >= y. Similarly, !(x <= y) is equivalent to x > y, which is much easier
to read.

Figure 4.9 summarizes the most common operators in Grace that give a boolean result.

Exercise 4.5.1 Suppose that the current value of x is 6, y is -2, and z is 13. For each of the
following conditions, determine whether they evaluate to true or false.

a. ((x − 6) < y) && (z == (2 ∗ x + 1)).

b. (!(x − 6 < y) && (z == (2 ∗ x + 1))).

c. ((x − 6) < y) || (z == (2 ∗ x + 1)).

d. !(((x − 6) < y) || (z == (2 ∗ x + 1))).

Before we move on, we should note a few last points about && and || . The first is to be sure
and use the double version of each of the symbols & and |.

Second, both && and || in Grace are implemented as “short circuit” operations. What this
means is that Grace will cease evaluating an expression involving one of these operators as soon as
it can determine whether the entire expression is true or false.

For example, suppose a program includes a declaration of an variable x representing a number,
and that it contains the expression (x > 10) && (x <= 20). If the computer evaluates that expression

92

when x has value 3, it will only evaluate x > 10 without even considering x <= 20. Because x > 10 is
false, the expression will first evaluate to false && (x <= 20). As a result, Grace can determine that
the final value of the && expression must be false no matter what the value of x <= 20. However, if
x > 10 had been true, the rest of the expression would have to be evaluated to determine whether
the entire && expression evaluates to true or false.

While you are unlikely to care much in this case whether the second argument is evaluated,
there are other cases in which evaluating the second argument may result in an error. For example
if the boolean expression (x != 0) && (3/x > 17) were not evaluated in this short circuit fashion,
then if x were 0 at run-time, a run-time error would result when 3/x is evaluated.

Expressions involving the || operator are also evaluated in a short circuit fashion. If the left
side evaluates to true then Grace knows that the entire || expression must evaluate to true, so it
does not bother to evaluate the right side. Conversely, if the left side is false then the right side
must be evaluated in order to determine the final value of the entire || expression.

4.6 Nested Conditionals

Occasionally we run into problems that would require complex boolean conditions if they are
handled using if or elseif statements as we have seen them used so far. Rather than constructing
these complex conditions, we will introduce alternative structures for supporting the program logic.
Happily, we don’t need to introduce any more syntax in order to handle them; we just need to
combine if statements in different ways.

Suppose it is a summer weekend and you are trying to figure out what to do. Your choice of
recreation will depend on the weather and how much money you have to spend. The following
table lists the various options and choices, where the row headings represent your possible financial
situations and the column headings represent the weather possibilities.

sunny not sunny

rich outdoor concert indoor concert

not rich ultimate frisbee watch TV

The table entries represent the suggested recreational activity given the financial situation represented
by the row and the weather as represented by the column. Thus if you are feeling rich and it is not
sunny, you might want to go to an indoor concert. If you are not feeling rich and it is sunny, you
might play some ultimate frisbee.

How can we represent these choices with an if statement? Let rich and sunny be variables of
type boolean, and let activityDisplay be a variable of type Text that will display the selected activity.
The if statement below uses elseif clauses to represent the four choices.

if (sunny && rich) then {
activityDisplay . contents := "outdoor concert"

} elseif (!sunny && rich) then {
activityDisplay . contents := "indoor concert"

} elseif (sunny && !rich) then {
activityDisplay . contents := "ultimate frisbee"

} else { // !sunny && !rich
activityDisplay . contents := "watch TV"

}

93

FIX! IMinigrace does support this precedence. Should it?J As we will discuss in more detail in the next
chapter, ! has higher precedence than &&. This means that the not operator, !, will always be
applied before the && operator. Thus the condition !sunny && rich is evaluated by first evaluating
!sunny and then using the && operation to determine whether both !sunny and rich are true.

This code correctly represents all four options, but is rather verbose and loses the nice structure
of the table. A related problem is that by the time we arrive at the last case the program has
evaluated three fairly complex boolean expressions.

We can write this so that only two evaluations of boolean variables are ever made, and further-
more that they are made without the added complication of negation or and operators. This is
accomplished by nesting if statements. A nested if statement involves including one or more if

statements inside another, as in the example below.
if (sunny) {

if (rich) {
activityDisplay . contents := "outdoor concert"

}
else { // not rich

activityDisplay . contents := "ultimate frisbee"

}
}
else { // not sunny

if (rich) {
activityDisplay . contents := "indoor concert"

}
else { // not rich

activityDisplay . contents := "watch TV"

}
}
The advantage to using these nested if statements is that the organization is quite similar to

that of the table. There is an outer if−else statement that determines whether sunny is true. This
corresponds to choosing either the first or second column of the table. Inside the outer if−part

there is an if−else statement that determines whether rich is true. This corresponds to figuring out
which row of the table applies. For example, if rich is false, the outcome should correspond to the
first column and second row of the table, and hence the activity should be “play ultimate”. The
else−part corresponding to it not being sunny is handled in a similar fashion.

Style Note: The nested if−else statements are indented from the outer ones in order to make the
code easier to read and understand. Grace compilers enforce this indenting because human readers
generally need the cues of indenting to understand complex code like this.

Aside from the indenting, another thing that makes this code easy to understand is the inclusion
of comments. In particular, notice how each else clause includes comments indicating under which
conditions the else−part is executed. This has the advantage of making it absolutely clear to the
reader under what circumstances this code is executed. The more complex the conditional, the more
important these comments become. We strongly urge all programmers to include such comments.

While the use of nested if−else statements yields code that is not quite as compact and simple
to understand as the table, it is much easier to see its correspondence to the table than the version
involving only elseif clauses. Notice in particular that no matter what the values of sunny and rich

are, only two boolean variables are ever evaluated during the execution of this code, so it is not

94

only clearer, but it is faster as well!

Exercise 4.6.1 Use nested conditionals to rewrite the onMouseClick method for tabulating votes of
four candidates from Section 4.5.

Exercise 4.6.2 Using the information provided in the table and nested conditionals, write an
if-statement that displays which course a student should take based on their interests in math and
writing. Let likesMath and likesWriting be variables holding boolean values, and let course refer to a
text object that will display the recommended course.

likes writing doesn’t like writing

likes math Economics Calculus

doesn’t like math English Psychology

In Figure 4.10 we provide another example of complex choices being represented by nested
if−else statements. This program provides the code to simulate a complete game of craps. The
rules of craps are as follows:

The shooter rolls a pair of dice. If the shooter rolls a 7 or 11, it is a win. If the shooter
rolls a 2, 3, or 12, it is a loss. If the shooter rolls any other number, that number becomes
the “point”. To win, the shooter then must roll the “point” value again before rolling a
7. Otherwise it is a loss.

The program simulates a roll of the dice by using a random number generator every time the
user clicks the mouse. In order to implement the rules given above, we must organize the game logic
in a way that can be represented using if statements. Notice that the rules for winning are quite
different depending on whether this is the player’s first throw. For instance, if it is the first throw,
then rolling a 7 results in a win, but if it is a second or subsequent throw, then 7 results in a loss.
Therefore we will organize the first level of conditional to determine whether it is the first throw.

In order to make such a choice, the Craps program in Figure 4.10 declares a variable, newGame,
to remember whether this is the first throw of a new game.

The outer if statement in the method onMouseClick has the following structure:
if (newGame) { // starting a new game

...
}
else { // continuing trying to make the point

...
}
The if−part of this code is itself an if statement with three branches, each of which encodes

the relevant actions to be taken based on the first roll of the dice. Recall that we saw a simplified
version of this example earlier in the chapter. The new code is reproduced below:

if ((roll == 7) || (roll == 11)) then { // 7 or 11 wins on first throw
status . contents := "You won!"

} elseif ((roll == 2) || (roll == 3) || (roll == 12)) then { // 2, 3, or 12 lose on 1st throw
status . contents := "You lose!"

} else { // Set the roll as the new point to be made and continue game
status . contents := "Try for your point!"

point := roll
newGame := false // set for continuing game

}

95

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (400,400)
var newGame := true // True if starting new game
var point // number trying to roll to win
def maxVal = 6 // max number on die

def welcomeMessageLoc = aLocation.at(20,50) // location of text items
def statusLoc = aLocation.at(10,70)
def instructionLoc = aLocation.at(10,90)

// display instructions
def welcomeMessage = aText.at(welcomeMessageLoc) with ("Let’s play craps!") on (canvas)
aText.at(instructionLoc) with ("Click to roll the dice") on (canvas)

def status = aText.at(statusLoc) with ("") on (canvas) // display status of game
var roll // total score for a roll of two dice

// For each click , roll the dice and report the results
method onMouseClick(pt) {

// get values for both dice and display sum
var roll := randomIntFrom(1)to(maxVal) + randomIntFrom(1)to(maxVal)
welcomeMessage.contents := "You rolled a {roll}!"

if (newGame) then { // starting a new game
if ((roll == 7) || (roll == 11)) then { // 7 or 11 wins on first throw

status . contents := "You won!"

} elseif ((roll == 2) || (roll == 3) || (roll == 12)) then { // 2, 3, or 12 lose on 1st throw
status . contents := "You lose!"

} else { // Set the roll as the new point to be made and continue
game
status . contents := "Try for your point!"

point := roll
newGame := false // set for continuing game

}
} else { // continuing trying to make the point

if (roll == 7) then { // 7 loses when trying for point
status . contents := "You lose!"

newGame := true // set to start new game
} elseif (roll == point) then { // making the point wins!

status . contents :="You won!"

newGame := true
} else { // keep trying

status . contents := "Keep trying for {point} ..."

}
}

}
startGraphics

}

Figure 4.10: Craps program illustrating nested conditionals.

96

Rather than having a separate branch for each possible value of the roll of the dice, there are
only three. These branches correspond to winning, losing, and establishing a point to be made on
subsequent rolls. The variable newGame remains true in the first two branches, so it need not be
updated. Only the third branch requires setting newGame to false.

Let us now examine the else−part of the outer if statement. Like the if−part, this nested if

statement also has 3 branches, though the second and third conditions are quite different from those
that handle the first roll:

if (roll == 7) then { // 7 loses when trying for point
status . contents := "You lose!"

newGame := true // set to start new game
} elseif (roll == point) then { // making the point wins!

status . contents :="You won!"

newGame := true
} else { // keep trying

status . contents := "Keep trying for {point} ..."

}
In this statement, both of the first two choices result in setting newGame back to true because they
represent the end of a game with either a win or a loss. The third statement merely asks the player
to continue rolling, so newGame remains false .

Exercise 4.6.3 Try writing out this program using only a single if statement with many elseif

clauses. It should become painfully clear why nested if statements are useful in situations with
complex logic.

4.7 Summary

In this chapter we introduced conditional statements and the boolean data type. The major points
discussed were:

• The if−else statement is used when different code is to be executed depending on the value of
a condition.

• if statements without an else clause are used when extra code is to be executed in one case,
but nothing extra is needed in the other.

• if statements with elseif clauses are used if there are more than two cases to be considered in
a choice. if statements with elseif clauses may or may not be terminated with an else−part,
at the programmer’s option.

• Nested if statements can be used to represent complex logic.

• Identifiers true and false represent boolean values. Comparison operators return boolean
values. Boolean expressions can be combined with the boolean operators &&, || , and !.

4.8 Chapter Review Problems

Exercise 4.8.1 Define the following Grace terms:

97

a. negation

b. block

c. !=

d. condition

Exercise 4.8.2 How would you express the following as operators in Grace?

a. greater than

b. or

c. equal

d. less than or equal

e. not

f. and

g. not less than

Exercise 4.8.3 The database at a doctor’s office stores information about each patient. For
each piece of information listed below, decide whether or not it would be appropriate to store the
information as a boolean.

a. patient’s birthday

b. patient’s gender

c. patient’s address

d. whether the patient has visited within the last year

e. patient’s insurance company

f. whether the patient’s last visit is fully paid

Exercise 4.8.4 Fix the problem(s) in the following code:
if (x = 5) then {

message.contents := "You win!"

}
else if (x < 5) then {

message.contents := "You lose!"

}
else if (x > 5) then {

message.contents := "Try again!"

}

Exercise 4.8.5 What are the values of the following expressions if x = 8, y = -5 and z = 2.

98

a. (x + y) != z

b. !((2 * x + 3 * y) >= z)

c. ((x - z) * 2) < (z - 2 * y)

d. (y - z + x) >= 0

e. (x - 4 * z + 1) == y

Exercise 4.8.6 Why is the following code more complex than it needs to be? Simplify it using
else-if
if ((score <= 100) && (score >= 90)) then {

gradeDisplay . contents := "You got an A")
}
if ((score < 90) && (score >= 80)) then {

gradeDisplay . contents := "You got a B")
}
if ((score < 80) && (score >=70)) then {

gradeDisplay . contents := "You got a C")
}
if (score < 70) then {

gradeDisplay . contents := "You don’t get a grade")
}

Exercise 4.8.7 What are the values of the following expressions if x == -2, y == -1 and z = 4.

a. ((x + y) < z) || (((4 ∗ y + z) > x) && (x > y))

b. (((x + y)< z) || ((4 ∗ y + z) > x)) && (x > y)

c. (!((x + y) < z)) || (((4 ∗ y + z) > x) && (x > y))

d. (((x + y) < z) || ((4 ∗ y + z) > x)) && (!(x > y))

e. (!((x + y) < z)) || (((4 ∗ y + z) > x) && (!(x > y)))

Exercise 4.8.8 Assume that x = 2, y = -3 and z = 5. What are the values of x, y and z after
the following code has been executed?

a.
if ((3 ∗ x + y) <= (z − 1)) then {

x := y + 2 ∗ z
} else {

y := z − y
z := x − 2 ∗ y

}

if (x > (y + z)) then {
y := y − 1
x := x + 1

}

99

Figure 4.11: Display for InvisibleBox

b. Exercise 4.8.9 Another variation of the game craps is to play what is called the “No Pass Line”.
Now rolling a seven or eleven on the first roll loses and a two, three, or twelve wins. After the point
is set, rolling a seven wins, while rolling the point again loses. Show how to modify Craps so that
you now are playing the “No Pass Line” instead.

4.9 Programming Problems

Exercise 4.9.1 Create the game InvisibleGame to master your use of conditionals. The game
will have the following features:

• When the game begins it will create three “invisible” boxes. The boxes will all be square but of
different sizes. One should be 30 pixels wide, the second one 45 pixels wide and the third 80
pixels wide. These boxes should be created randomly anywhere on the screen.

• The user will click the mouse and try to hit the boxes when doing so.

• When the mouse exits the window, the user will be notified of his/her success. The output
should look like Figure 4.11.

• When the mouse re-enters the window, all variables should be reset and the boxes moved to
new random locations.

• Points are assigned as follows

– 200 points: Hitting all three boxes

100

Figure 4.12: Display for Dicey

– 150 points: Hitting the small box and the medium box

– 125 points: Hitting the small box and the large box

– 110 points: Hitting the medium box and the large box

– 100 points: Hitting only the small box

– 75 points: Hitting only the medium box

– 50 points: Hitting only the large box

– -1 point: For each mouse click

• Set if up so that the window is 300 pixels wide and 300 pixels high.

Exercise 4.9.2 Write a simple game with three dice called Dicey, which may remind you of a
more popular game with five dice. When the user clicks the mouse, the three dice are “rolled” and
the results are displayed on the screen. The display will also include whether the user rolled 3 of a
kind, a pair or nothing of particular interest. See Figure 4.12

101

102

Chapter 5

Types, Numbers, and Strings

The programs that we are now writing in Grace are starting to get complex enough now that it will
be useful to get help from the computer in writing correct programs. We all make mistakes when
we are doing things, so it will help to anticipate that eventuality and have assistance ready.

It probably won’t surprise you to know that it is easier to fix errors when they are discovered
early. I’ve put together lots of furniture pieces and children’s toys. If I put something in wrong
early on, but don’t discover the error until I’m nearly done, I generally have to take everything
apart and essentially start over. However, if I recognize the error right away, it is much easier to fix
the problem and complete the task.

In this chapter, we will introduce the notion of type annotations in order to document the
programmer’s intentions. These type annotation will not only make it easier for a reader to figure
out what your program is trying to do, but they will also be machine checkable so that you can be
warned if the Grace compiler detects any inconsistencies in your program. Expecially helpfully, this
machine check will happen before your program is executed, helping you to find errors faster and
typically providing better information on where the error occurs.

Once we introduce the notion of type, we talk about three kinds of types in some detail. The
first two to be discussed are the types Number and String. We then talk about the types of the
geometric objects introduced in the objectdraw library.

5.1 What is a type?

In Grace, a type is a specification of the methods that an object can respond to. It is also useful to
think of a type as the collection of all objects can respond to the methods specified by the type.

Familiar types include numbers (written Number), booleans (written Boolean), and strings (written
String). We’ll come back and talk about the methods in those types, but let’s first consider the
types of objects from the objectdraw library.

5.2 Types from objectdraw

In section 2.2.2 we specified the operations available on locations. These operations are specified
formally in the type Location from the objectdraw library:
type Location = {

// coordinates of location

103

x−>Number
y−>Number

// return new location shifted by dx to right and dy down
translate (dx:Number,dy:Number)−>Location

// return distance from this location to other
distanceTo(other :Location)−>Number

// return if other at same place as self
==(other:Location)−>Boolean

// return string representation of location
asString−>String

}
Each of the items in the Location type is the specification of a method supported by locations.

Thus the first two items specify that an object of type Location has methods x and y that each return
a number. The next item specifies that there is a method translate that takes two parameters dx

and dy that are numbers and returns an object that is another Location.

In general, types are defined in declarations of the following form:
type NewType = {

...
m(p1:T1 ,..., pn:Tn) −> RType
...

}
In this declaration, NewType is the name of the type being defined. Each line of the type expression
specifies a method of the type.

In the example above, m is the name of the method. It takes n arguments or parameters. Each
parameter is specified with a name and its associated type. Above, parameter p1 has type T1. A “:”
is used to indicate the association of identifier and type. If there is more than one parameter, the
parameters (and their types) are separated by commas, and the entire collection of parameters is
surrounded by parentheses. (If a method has no parameters then the parentheses may be omitted.)
Finally the type of value returned by the method is placed after the parameters, separated from the
parameters by “−>” representing an arrow.

Going back to the example of the type Location, we can see that methods x and y take no
parameters, but always return a number. Thus if locn is an identifier of type Location, then both
locn .x and locn.y are legal expressions, and when evaluated should return numbers (assuming that
locn has been initialized properly).

The method distanceTo specified in Location takes one parameter of type Location and has return
type Number. Thus if locn1 and locn2 are associated with locations, then locn1.distanceTo(locn2) is a
legal expression that will return a number representing the distance between the two locations.

The methods == and asString are included in all types. If loc1 and loc2 are generated by aLocation

(and hence have type Location) then loc1 == loc2 will be true if and only if the two locations have
the same x and y coordinates.

All of the graphic items from the objectdraw library satisfy the type Graphic shown in Figure 5.1.
Reading through the methods specified by the type we see that there are methods to retrieve the x

and y coordinates of the graphics object as well as its location .

104

The next two methods in Graphic are used to retrieve and reset whether the object is visible
on the canvas. Method isVisible returns true if and only if the object is currently visible, while
method isVisible := can be used to reset the visibility of the object. Thus gobj. isVisible := true sets
it so that gobj is visible on the canvas, while Thus gobj. isVisible := false makes it invisible. The
isVisible := method does not return a value, it just resets the visibility of the object. As a result we

annotate the return type to be Done, indicating that nothing further will be done with the result.
Because most mutator methods don’t return values, they generally will have a return type of Done

as well.

Methods like isVisible:= that end with := are treated specially in Grace. Unlike regular methods,
a programmer may insert one or more spaces before the :=. Second, the parameter of the method
need not be surrounded by parentheses.

Graphic then has two methods to move the object, moveTo, which takes a Location as a parameter,
and moveBy, which takes two numbers indicating how far it should move to the right and down.
Both have return type Done as they don’t return a value. The methods color and color := are like
isVisible , giving us access to or the ability to change the color of the object.

The methods sendForward, sendBackward, sendToFront, and sendToBack are used to change the
relative order of objects on the canvas. They take no parameters and return Done. The final two
methods are used to either add the graphic object to a canvas or remove it.

The methods in Graphic are available to all graphic objects in the objectdraw library, but they
also contain other specialized methods.

For example, objects created via aText have type Text, shown in Figure 5.2. The & in the first
line of the type definition indicates that Text contains all of the methods in type Graphic as well as
those listed after the keyword type. In this case we can access the width of the text object as well as
get and set the contents of the string and the fontSize of the string displayed on the canvas.

Lines and two-dimensional graphic objects will have somewhat different types. For example,
lines have endpoints, while rectangles and ovals have length and width. The definition of Line is in
Figure 5.3. Objects generated from aLine will satisfy this type.

Finally all of the two-dimensional graphics objects, including both filled and framed rectangles
and ovals will satisfy the type Graphic2D, which is provided in Figure 5.4. The methods contains and
overlaps both return booleans. The first returns true if the location parameter is inside the receiver
graphic object, while the second returns true if the receiver and the parameter overlap.1

5.3 Using type annotations

We can use type annotations in our program in order to make it easier to understand and to provide
the Grace compiler with information needed to find errors earlier. The key is to annotate every
identifier with its type when it is introduced. Thus we will provide types on definitions, variable
definitions, and method headers – including types for parameters as well as the return type of the
method.

To illustrate this, the Craps program from the last chapter, but with full type information, is
given in Figure 5.5

As can be seen in the figure, we have annotated all definitions and variables with the appropriate
type information. Thus newGame will always represent an object of type Boolean, while status will

1 A couple of provisos: overlaps returns true if the bounding rectangles of the objects overlap. Thus, for example,
it may return true for two ovals even if they don’t overlap, but their bounding rectangles do.

105

type Graphic = {
// location of object on screen
x −> Number
y −> Number
location −> Location

// Is this object visible on the screen?
isVisible −>Boolean

// Determine if object is shown on screen
isVisible :=(:Boolean)−>Done

// move this object to newLocn
moveTo(newLocn:Location)−>Done

// move this object dx to the right and dy down
moveBy(dx:Number,dy:Number)−>Done

// set the color of this object to c
color :=(c:GColor)−>Done

// return the color of this object
color−>GColor

// Send this object up one layer on the screen
sendForward−>Done

// send this object down one layer on the screen
sendBackward −> Done

// send this object to the top layer on the screen
sendToFront −> Done

// send this object to the bottom layer on the screen
sendToBack −> Done

// Return a string representation of the object
asString −> String

// Add this object to canvas c
addToCanvas(c:Canvas)−>Done

// Remove this object from its canvas
removeFromCanvas−>Done

}

Figure 5.1: The type Graphic from objectdraw

106

type Text = Graphic & type{
// return the string shown in the text object
contents −> String

// reset the string shown in the text object to s
contents:=(s: String) −> Done

// return the width of the text object
width −> Number

// return the font size of the text object
fontSize −> Number

// reset the font size of the text object
fontSize :=(size :Number) −> Done

}

Figure 5.2: The type Text from the objectdraw library

type Line = Graphic & type {
// start and end of line
start −> Location
end −> Location

// set start and end of line
start :=(start ’: Location) −> Done
end:=(end’:Location) −> Done
setEndPoints(start ’: Location,end’:Location) −> Done

}

Figure 5.3: The type Line from the objectdraw library

type Graphic2D = Graphic2D & type {
// dimensions of object
width−>Number
height−>Number

// Change dimensions of object
setSize (width:Number,height:Number)−>Done
width:=(width:Number)−>Done
height:=(height:Number)−>Done

// Does this object contain locn
contains(locn :Location)−>Boolean

// Does other overlap with this object
overlaps (other :Graphic2D)−>Boolean

}

Figure 5.4: The type Graphic2D from the objectdraw library

107

dialect "objectdrawDialect"

object {
inherits aGraphicApplication . size (400,400)

var newGame:Boolean := true // True if starting new game
var point :Number // number trying to roll to win

def maxVal:Number = 6 // max number on die

def welcomeMessageLoc:Location = aLocation.at(20,50) // location of text items
def statusLoc:Location = aLocation.at(10,70)
def instructionLoc :Location = aLocation.at(10,90)

// display instructions
def welcomeMessage:Text = aText.at(welcomeMessageLoc) with ("Let’s play craps!") on (canvas)
aText.at(instructionLoc) with ("Click to roll the dice") on (canvas)

def status :Text = aText.at(statusLoc) with ("") on (canvas) // status of game
var roll :Number // total score for a roll of two dice

// For each click , roll the dice and report the results
method onMouseClick(pt:Location) −> Done {

// get values for both dice and display sum
roll := randomIntFrom(1)to(maxVal) + randomIntFrom(1)to(maxVal)

welcomeMessage.contents := "You rolled a {roll}!"

if (newGame) then { // starting a new game
if ((roll == 7) || (roll == 11)) then { // 7 or 11 wins on first throw

status . contents := "You won!"

} elseif ((roll == 2) || (roll == 3) || (roll == 12)) then { // 2, 3, or 12 lose on 1st throw
status . contents := "You lose!"

} else { // Set the roll as the new point to be made and continue game
status . contents := "Try for your point!"

point := roll
newGame := false // set for continuing game

}
} else { // continuing trying to make the point

if (roll == 7) then { // 7 loses when trying for point
status . contents := "You lose!"

newGame := true // set to start new game
} elseif (roll == point) then { // making the point wins!

status . contents :="You won!"

newGame := true
} else { // keep trying

status . contents := "Keep trying for {point} ..."

}
}

}
startGraphics

}

Figure 5.5: The Craps program with full type annotations

108

always refer to an object of type Text.
The method onMouseClick takes a parameter of type Location, with a return type of Done indicating

that it is a mutator method. All of the other mouse handling methods also have a single parameter
of type Location and have a return type of Done.

5.4 Numbers

Most programming languages have different types of numbers. For example, many languages have
different types for integers and numbers with fractional parts like 3.14159. In Grace we don’t
distinguish between these types and just have the single type Number, which represents both integers
and numbers with fractional parts.

Most of the methods of type Number, presented in Figure ?? should be familiar to you. The
operations +, −, ∗, and / are the usual arithmetic operations. The method written prefix− is the
negation operator and is written before the receiver: −n. The specification prefix tells Grace to
expect it before rather than after the receiver. As described in Chapter 3, % is the modulus operator,
so m % n is the remainder when m is divided by n. Method truncate throws away the fractional part
of a number, returning the integral part. Thus 5.34. truncate is 5, while −5.34.truncate is -5.

The comparison operators ==, !=, >, >=, <, <= are also the familiar operations. The method
asString returns a string representation of the number. Method inBase(b) returns a string representa-
tion of the receiver in base b
type Number = {

// return value of sum of receiver and other
+(other:Number) −> Number
// return value of difference of receiver and other
−(other:Number) −> Number
// return value of product of receiver and other
∗(other :Number) −> Number
// return value of quotient of receiver and other
/(other :Number) −> Number
// return value of remainder when receiver divides into other
%(other:Number) −> Number
// return value of receiver raised to power of other
ˆ(other :Number) −> Number
// return integer part of receiver
// (i .e ., what is left after throwing away fractional part)
truncate −> Number
// return value of negative of receiver
prefix− −> Number
// return whether receiver and other are the same number
==(other:Number) −> Number
// return whether receiver and other are different
!=(other:Number) −> Number
// return whether receiver is less than other
<(other:Number) −> Boolean
// return whether receiver is less than or equal to other
<=(other:Number) −> Boolean
// return whether receiver is greater than other
>(other:Number) −> Boolean
// return whether receiver is greater than or equal to other

109

>=(other:Number) −> Boolean
// return string representation of receiver
asString −> String
// return the receiver as a string expressed in base b
inBase(b:Number) −> String

}
We have explained that the common mathematical operations are methods, yet the syntax of an

expression using +, for example, does not look like a method request.

5.4.1 The math module

Modules in Grace are pre-defined objects that contain definitions that can be imported into another
program. The predefined math module in Grace includes other methods that are useful with type
Number, including trigonometric functions such as sin , cos, tan, asin, acos, and atan, where the last
three correspond to the arcsine, arccosine, and arctangent functions.

Suppose we have a Grace program in which the statement:
import "math" as mathObj

The string "math" after the keyword import is the name of the library as defined in Grace. The
identifier after the key word as is the name of the object as it is used in the program. Thus in this
program, we would write mathObj.sin(0) to obtain the value of the sine of 0 or mathObj.cos(3.14159

for the value of the cosine of a number close to π.2

5.5 Handy Sources of Numeric Information

Grace provides a number of methods in its libraries that can be used to generate useful numerical
information. Several of these features are described in this section.

5.5.1 Time flies

There are many signs that computers keep track of the time. Most likely, the computer you use
displays the current time of day somewhere on your screen as you work. Your computer can tell
you when each of your files was created and last modified. While your web browser downloads large
files, it probably displays an estimate of how much longer it will take before the process is complete.

The sys module in Grace provides a number of methods that can be used by a programmer. The
one that we are interested measures the time elapsed during a program. To use this method, you
must import module sys and then evaluate sys . elapsed, which will return a Number indicating the
number of seconds since the program started executing.

For example, if you run a program containing the following code
import "sys" as system

...
print "{system.elapsed} seconds have elapsed since this program started"

Grace might produce the following output

0.005 seconds have elapsed since the program started

2Much of the time we use the same name before and after the as keyword. Thus we could write import "math"as
math and then we could write math.random. We didn’t do that here to emphasize the independence of the string

and the identifier name.

110

dialect "objectdrawDialect"

import "sys" as system

// A program to measure the duration of mouse clicks.
object {

inherits aGraphicApplication . size (400,400)
// coordinates where message should be displayed
def textLocation :Location = aLocation.at(30,50)

// When the mouse button was depressed
var startingTime : Number

// Used to display length of click
def message:Text = aText.at(textLocation)with("Please depress and release the mouse")

on(canvas)

// Record the time that the button is pressed
method onMousePress(point:Location) −> Done{

startingTime := system.elapsed
}

// Display the duration of the latest clic
method onMouseRelease(point:Location) −> Done {

message.contents :=
"You held the button down for {system.elapsed - startingTime} seconds"

}

startGraphics
}

Figure 5.6: Grace program to measure mouse click duration.

The elapsed method can be very helpful in measuring short intervals of time within a program.
This is an ability we will need in many programs in the following chapters. To use elapsed to measure
an interval, we simply ask Grace for the time at the beginning of the interval we need to measure
and then again at the end. The length of the interval can then be determined by subtracting the
starting time from the ending time.

As an example of how to do such timing, a program that will measure the duration of a click of
the mouse button is shown in Figure 5.6. The program first uses system.elapsed in the onMousePress

method. It assigns the time returned to the variable startingTime so that it can access the value after
the mouse has been released. In onMouseRelease, the program computes the difference between the
time at which the mouse was pressed and released. A sample of what the program’s output might
look like is shown in Figure 5.7. FIX! Ipicture not rightJ

5.5.2 Sines and Wonders

If you review all the things you have learned to do with numbers in Grace, you should be unimpressed
at best. Think about it. For just $10 you could go to almost any store that sells office or school
supplies and buy a pocket calculator that can compute trigonometric functions, take logarithms,

111

Figure 5.7: Sample output of the ClickTimer program

raise any number to any power and do many other complex operations. On the other hand, with
Grace and a computer that probably costs 100 times as much as a calculator, all you have learned
to do so far is add, subtract, divide, and multiply. In this section we will improve this situation by
introducing a collection of methods that provide the means to perform more advanced mathematical
calculations.

FIX! INo absolute value at the moment, fix when added to Number – also sortJ

Absolute values

The method absValue can be used to compute the absolute value of a number. The expressions

math.absValue(17)

and

math.absValue(-17)

both yield the int value 17, while the expressions

math.absValue(-34.2)

and

math.absValue(34.2)

both yield the double value 34.2.
The absValue method is sometimes used to test whether numeric are nearly equal. If you test to

see whether two Number values are exactly equal using ==, the test may yield false even when the
values being compared should be equal. This occurs because the computer only records about 15
digits of any double value. For example, although by definition

a =
√
a×
√
a

the Grace expression
3 == math.sqrt(3)∗math.sqrt(3)

will evaluate to false . Since sqrt (3.0) produces a value that only approximates
√

3, the product
Math.sqrt(3.0)∗Math.sqrt(3.0) evaluates to 2.9999999999999996. Somewhat confusingly if you execute

112

if ((sqrt (3) ∗ sqrt (3)) == 3) then {
print "same"

} else {
print "different: value is {sqrt(3) * sqrt(3)}"

}
the system will print out different : value is 3 because the system rounds the answer before printing.

To deal with such inaccuracies, it is often better to test whether two values are approximately
equal rather than exactly equal. If a and b are two numeric values, then a test of the form

if (math.absValue(a - b) < EPSILON)

where ESPILON is a constant with an appropriately small value, is a simple way to test for approximate
equality.

Exercise 5.5.1 Below, you will find examples of several well-known mathematical equalities and
inequalities. Using the methods discussed in this section, translate each of these mathematical
statements into a Grace expression. Each of the expressions you write should produce a boolean as a
result. Given that the mathematical statements are facts, all these expressions should evaluate to
true. In fact, however, as a result of the limited precision with which computers represent double

values, some of the formulas you produce may evaluate to false . You do not need to make any effort
to address these potential “mistakes” in your answers.

For example, if the question asked you to convert the “Triangle inequality”:

|x+ y| ≤ |x|+ |y|

the correct answer would be the Grace expression:

math.absValue(x + y) <= math.absValue(x) + math.absValue(y)

Convert each of the following mathematical statements into Grace expressions:

a. The reverse triangle inequality -
|x− y| ≥ ||x| − |y||

b. the formula for the total return t received when p dollars are invested for y years at an annual
rate r with interest compounded monthly -

t = p(1 + r/12)12y

c. The triple angle identity for the cosine function:

cos 3t = 4 cos3 t− 3 cos t

d. A version of the half-angle identify for the sine function:

| sin t

2
| =

√
1− cos t

2

e. The exponentiation formula for the log function (use the natural log):

log xp = p log x

113

5.6 Strings

By now it should be clear that Grace programs can manipulate many kinds of data and that the
language classifies the different kinds of data it can manipulate into types. Also, it is undeniably
clear that one of the most important types of data that computers process is text. Text-based
programs such as word processors and e-mail applications are among the most important and widely
used applications on personal computers. Therefore, it should not be a surprise that Grace has a
type for manipulating textual data. This type is named String .

We have been using String values since our very first example programs in Chapter Chap::firstSip.
Quoted pieces of text like the message

"I’m Touched"

which appeared in those first programs are literals describing values of the String type. The type
String is immutable, just like Number. Thus there are no mutator methods defined on String .

We have seen that Grace provides useful facilities for including the results of calculations in a
string. In Figure 1.3, we saw that

print "The results of squaring 7 is {square(7)}."

resulted in evaluating square(7), converting the answer 49 to the string "49", and then inserting it
into the string so that the program printed

The results of squaring 7 is 49.

In general, when an expression is surrounded by curly braces in a string, the expression will
be evaluated, converted to a string by applying the method asString and then inserted into the
surrounding string. This operation is known as string interpolation.

A useful operator provided for strings is the concatenation operator, written ++. It is used to
“glue” two strings together to form a new one. This can be helpful when a string is too long to fit on
a single line. For example:

print ("This string is way too long to fit on a single line, so we must "++
"break it into two pieces.")

A couple of points about this example. First, notice the blank at the end of the string on the first
line of the statement. That is needed so that we don’t end up with ”mustbreak” in the combined
string. Second, notice that we have surrounded the concatenation of the two strings by parentheses.
That is necessary so Grace knows where it should stop printing. The general rule is that whatever
is being printed should be surrounded by parentheses. However, if a single literal string is being
printed then the parentheses may be omitted as it the double quotes mark the beginning and end of
the string.

The fact that Grace considers String a type implies that we can do several things with Strings
that Grace allows us to do with any type. We can use Strings as parameters. We have done this in
both aText constructions and invocations of the print method. We can also define instance variables
of String type and use assignment statements to associate values with these variables.

To illustrate the potential value of using String variables, consider the program shown in Figure 5.8.
This program implements a simple interface one might use to practice encoding information in
Morse code.

In Morse code, each letter of the alphabet is encoded using a sequence of long and short signals.
These signals are called dashes and dots because a standard way to represent the signals on paper is
to draw a dash for a long signal and a dot for a short signal. Thus,
. . . − − − . . .

114

// A program to display Morse code entered by pressing
// the mouse as dots and dashes on the canvas.

dialect "objectdrawDialect"

import "sys" as sys

object {
inherits aGraphicApplication . size (400, 400)
// where to show codes
def displayPosition : Location = aLocation.at(30, 30)

// Minimum time (in seconds) for a dash
def dashTime: Number = 0.2

// String to hold sequence entered so far
var currentCode: String := "Code = "

// Time when mouse was last depressed
var pressTime: Number

// Text used to display Morse code on canvas
def display = aText.at(displayPosition) with ("Code = ") on (canvas)

// Record time at which mouse was depressed
method onMousePress (point: Location) −> Done {

pressTime := sys . elapsed
}

// Add . or − depending on how long mouse held before release
method onMouseRelease(point: Location) −> Done {

if ((sys . elapsed − pressTime) > dashTime) then {
currentCode := currentCode ++ " -"

} else {
currentCode := currentCode ++ " ."

}
display . contents := currentCode

}

startGraphics
}

Figure 5.8: A program to display Morse code as dots and dashes

115

Figure 5.9: Sample of Morse code program display

represents a message composed of three short signals followed by three long signals followed by three
short signals. This happens to be the Morse code for the distress signal “SOS”.

The program in Figure 5.8 translates short and long presses of the computer’s mouse button
into a sequences of dots and dashes. If someone running the program used the mouse to enter the
sequence discussed above, the program would display the output shown in Figure 5.9 The idea is
that a person trying to learn Morse code could use the mouse to practice signaling and then look at
the sequence of dots and dashes the program displays on the screen to see if they got it right. This
means that we don’t need to worry about which sequences of dots and dashes go with which letters
of the alphabet to write the program. All we need to know about Morse code is that a short signal
is a dot and a long signal is a dash.

The program uses a String variable named currentCode to keep track of the message it should
display on the screen. Initially, the display will simply be

Code =

Then, each time the user clicks the mouse, the program will add a dot or a dash to the message. If
the first thing the user does is a short click, the message will become

Code = .

If this is followed by two long clicks, the message will become
Code = . − −

and so on.

To add a dash to the value of the variable currentCode, the program uses an assignment statement
of the form

currentCode := currentCode ++ " -";

which can be found in method onMouseRelease. This statements looks like and acts a great deal like
the similar assignment we have used to increment number variables

count := count + 1;

It takes the existing text associated with currentCode, adds a dash to it, and then tells Grace to
make this the new value of currentCode.

The program uses the sys . elapsed method described in Section 5.5.1 to access the current time
when the mouse is pressed and released. It compares the time that elapses between these two events
to a value, dashTime. If the elapsed time is greater than this, it executes the assignment shown

116

above to add a dash. Otherwise it uses a similar assignment to add a dot. Either way, after the
mouse is released it uses contents := to update the Text object named display to hold the extended
sequences of dots and dashes.

Like all other types, String supports == and asString .3 Grace provides many other accessor
methods to operate on Strings . For example, currentCode. size will produce a Number value telling
how many characters long a String is. We will consider these functions and other aspects of using
Strings in more detail in Chapter ??.

5.7 Chapter Review Problems

Exercise 5.7.1 Write the code necessary to define a Number called num, initialized to 5, and a
Location called point, initialized to (50, 50). What are the differences in the definitions? Be sure to
include the type information in each definition.

Exercise 5.7.2 Fill in the condition for the following code. Assume myNumber has been declared
as a Number.
if (// myNumber is evenly divisible by either 3 or 4) then {

// do something
}

5.8 Programming Problems

Exercise 5.8.1 Write a program that displays the number of seconds that have elapsed between two
clicks of the mouse. The program should not display a value after the first mouse click, but should
display a value after every subsequent click of the mouse.

Exercise 5.8.2

a. DNA stands for deoxyribonucleic acid and is a very long polymer of four different types
of nucleotide bases. These four bases are Guanine(G), Adenine (A), Thymine (T), and
Cytosine(C). It is the sequence of these bases that uniquely determine DNA. Write a simple
program called DNAGenerator that may impress any friends of yours with interests in biology.
This program will generate a strand of DNA by randomly adding one of the the four letters
“G”, “A”, “T” or “C” each time the mouse is clicked. It also displays the generated DNA
strand as shown in Figure 5.10.

b. Modify your program so that no more than 20 bases are added to the DNA strand.

Exercise 5.8.3 In Morse code, a single dot is used to represent the letter “E”, a single dash
represents a “T”, and the letter “D” is represented by a dash followed by two dots. This means that
the sequence

. .

3It might be hard to see why String would need asString , but it would be automatically called if a string variable
is interpolated in another string.

117

Figure 5.10: Display for DNAGenerator

has two possible interpretations. It could be a single letter “D” or it could be the word “TEE”.
The lengths of the pauses between dots and dashes are used to resolve such ambiguities. If the

pause between a pair of dots is short, then the two signals are treated as part of a single letter. If
the pause is long, the signals are treated as parts of separate letters. To make it possible to represent
such long and short pauses in our graphical representation of sequences of dots and dashes we might
represent the sequence for “D” as

. .

and the sequence for “TEE” as

. .

That is, we would put more spaces between pairs of symbols if the pause between them was longer.
Thus, the signal for “TED” would look like

. . .

Modify MorseCode so that it adds extra spaces for long pauses. Assume a pause is long if its
duration equals (or exceeds) that of a dash.

118

	What is Programming Anyway?
	Without Understanding
	The Grace Programming Language
	Your First Encounter with Grace
	Programming Tools
	Methods & Definitions
	Objects
	Classes
	Program Layout

	Generating Graphics with Objectdraw
	The Graphics Coordinate System
	A simple example
	Constructing Graphic Objects
	Methods
	startGraphics

	Creating other graphics items
	Additional Event Handling Methods
	Mouse Event Handling Methods
	The Initialization code

	To Err is Human
	Summary

	What's in a name?
	Naming and Modifying Objects
	Mutator Methods
	Definitions
	Variable Declarations
	Comments
	Additional Mutator Methods
	Exercises

	Non-graphical Classes of Objects
	The Class of Colors
	The Location Class

	Layering on the Canvas
	Accessing the Location of the Mouse
	Sharing Parameter Information between Methods
	Summary

	Working with Numbers
	Writing numbers
	Introduction to Accessor Methods
	Accessing the Size of the Canvas
	Expressions and Statements
	Arithmetic Expressions
	Ordering of Arithmetic Operations

	Numeric Instance Variables
	Displaying Numeric Information
	Displaying Numbers as text
	Using print
	Mixing Text and Numbers

	Random numbers
	Summary

	Making Choices
	A Brief Example: Using the if Statement to Count Votes
	The if Statement
	Example: Using the if Statement with 2-D Objects

	Understanding Conditions
	Using Boolean Values

	Selecting Among Many Alternatives
	More on Boolean Expressions
	Nested Conditionals
	Summary
	Chapter Review Problems
	Programming Problems

	Types, Numbers, and Strings
	What is a type?
	Types from objectdraw
	Using type annotations
	Numbers
	The math module

	Handy Sources of Numeric Information
	Time flies
	Sines and Wonders

	Strings
	Chapter Review Problems
	Programming Problems

