

Page 1 of 10

Computer Science 51G
Fall 2014

Midterm Examination

 13 October, 2014

Question Points Score Description

1 10 Program analysis

2 15 Class design

3 15 GUIs and ActiveObjects

4 10 Short Answers

Total 50

This examination is closed book. You have 55 minutes to complete the exam.
You do not need to include comments in your code unless you feel it is necessary for us
to understand your solution.

Your Name (Please print) _____________________________

Page 2 of 10

1. Program analysis:

The following is a simple but complete Grace program that does nothing more than
draw a picture on the canvas. Draw a sketch of the picture that will be produced on the
canvas below.

dialect "objectdraw"

def mystery: GraphicApplication = object {
 inherits graphicApplication.size(100, 100)

 var x: Number
 var y: Number := 0
 while {y < 100} do {
 x := 0
 while {x <= y} do {
 framedOval.at(x @ y) size (25, 25) on (canvas)
 x := x + 25
 }
 y := y + 25
 }

 startGraphics
}

Page 3 of 10

2. Class design:

It is about that time of year when Gus the Ghost returns to his favorite haunt – the CS 51G lab. We want
you to write a Ghost class for Gus. Here is his picture:

Gus’s body can be drawn as a gray circle and overlaid gray rectangle. The rectangle's height is twice its
width, and it should cover half of the circle. We provide constants for some of these dimensions (and the
ghost’s color) for you in the starter code below. Gus has two eyes- the tops of the eyes are at the same
height as the top of the rectangle, and the distance between each and the edges of the ghost is 1/4 the
rectangle’s width. We want you to implement a class with several methods for Ghost.

First, write a ghost class that takes two parameters:

• A point representing the upper left corner of the ghost, and
• a canvas.

Since Gus can move around the lab, you should also write a moveBy method that moves a Ghost by an
amount specified by the caller of the method, i.e. moveBy should have two parameters, a dx and a dy.
In addition, we want you to write a contains method to test if a point is inside the Ghost.

Gus turns invisible to sneak up on unsuspecting students. He does this by making his body disappear and
reappear. However, you can always see his eyes. The method to do this in the Ghost class is
visibleBody:=(). If myGhost has type Ghost, then after evaluating
myGhost.visibleBody:=false, myGhost should appear like this in the canvas:

Requesting myGhost.visibleBody:=true will make the ghost body reappear, and the ghost will
look like it did in the first picture above. Fill in the missing details from the ghost class below. We
have created the eyes for you, but not the body or head of the ghost.

type Ghost = {
 moveBy(dx: Number, dy: Number) -> Done
 contains(pt: Point) -> Boolean
 visibleBody:=(tval: Boolean) -> Done
}
class ghost. at(pt: Point) on (canvas: DrawingCanvas)

Page 4 of 10

 -> Ghost
 def bodyWidth: Number = 40
 def bodyHeight: Number = bodyWidth * 2
 def ghostColor: Color = lightGray
 def eyeSize: Number = 8
 def eyeInset: Number = 10

 def leftEye: Graphic2D =
 filledOval.at(pt+(eyeInset@eyeInset))
 size (eyeSize,eyeSize) on (canvas)
 def rightEye: Graphic2D =
 filledOval.at
 (pt+((bodyWidth-eyeInset-eyeSize)@eyeInset))
 size(eyeSize,eyeSize) on (canvas)

 method moveBy(dx: Number, dy: Number) -> Done {

 }

Page 5 of 10

 method contains(pt: Point) -> Boolean {

 }

 method visibleBody:=(tval: Boolean) -> Done {

 }
}

Page 6 of 10

3. GUI & Animation Programming:

For this problem, you are to program a simple game that uses a button and an
animated object. When the user clicks the mouse, a ball appears at the
location of the click and starts falling down the screen. There is a button at the
bottom of the window labeled “Push to punch ball up”. Each time the user
pushes the button the ball is pushed up the screen by 100 pixels. The game
continues until the ball falls completely off the canvas (i.e., the top of the ball is
no longer visible). In the full version of the game, we would keep track of how
close to the bottom of the screen we get, but we’ll ignore that here.

The skeletons of the main program and class needed to build this game are
provided below. Your task is to fill in the missing code for each. For the class
fallingBall you need only to insert code for the method punchIt and start. For
the main program, saveMe, you need to insert the code to create, install, and
associate an action with the button.

Page 7 of 10

dialect "rtobjectdraw"
import "animation" as animator

type AnimatedPuncher = {
 start -> Done
 punchIt -> Done
}

// used to initialize theBall to prevent crash
def emptyPuncher: AnimatedPuncher = object {
 method start -> Done {}
 method punchIt -> Done {}
}

// class to create a falling ball that can be “punched” up
class fallingBall.at(pt: Point) radius (size: Number)
 on (canvas: DrawingCanvas) -> AnimatedPuncher {
 def punchDistance: Number = 100
 def pauseTime: Number = 30
 def dropDistance: Number = 2
 def ball: Graphic2D =
 filledOval.at(pt) size (2*size, 2*size) on (canvas)

 // add code to “punch up” ball
 method punchIt -> Done {

 }

 // start the animation
 method start -> Done {

 }
}

Page 8 of 10

def saveMe: GraphicApplication = object {
 inherits graphicApplication.size(400,400)
 var theBall: AnimatedPuncher := emptyPuncher

// Insert code to create and use the button

 method onMousePress(pt: point) -> Done {
 theBall := fallingBall.at(pt) radius (20) on (canvas)
 theBall.start
 }

 startGraphics
}

Page 9 of 10

4. Short answers:

a. Suppose a Grace program includes the following code:
class cText.new {
 def x = 7
}

def c = cText.new
print (c.x)

When this is executed, the system prints the following error message:
NoSuchMethod at line 6 of test: Requested confidential method
'x' on object an object from outside.

Please explain what the problem is, and provide the simplest fix to the code in
class cText that would allow the print statement to execute without error.

b. Suppose that in our Frogger program that each time a vehicle aCar went off the
screen the program executed:

aCar.visible := false
rather than
 aCar.removeFromCanvas

What is the difference between these two statements and what practical
consequences would this change have?

Page 10 of 10

c. The following code fragment is correct, but not as elegant or as efficient as it
should be. Please improve the code so that it does what the original does, but is
more elegant or efficient. Write the corrected code below the original code.
You may assume that inABox is declared elsewhere as a variable of type
Boolean.

method onMousePress(point: Point) -> Done {
 if (box1.contains(point)) then {
 inABox := true;
 } elseif (box2.contains(point)) then {
 inABox := true;
 } else if (box3.contains(point)) then {
 inABox := true;
 } else {
 inABox := false;
 }
}

d. In games like that described in problem 3 of this exam, we often want to keep
track of the score so far to motivate the player to continue playing. Suppose
that we have declared a variable highScore to use in the game. Please write a
method to update the highScore variable given that the latest score recorded
is provided in a parameter newScore. Please write the body of the method
that will ensure that after execution, the value of highScore is the highest
score seen so far. You may not assume that you have a predefined method that
computes the maximum of two values.

// After this method is executed, the value of
// highScore is the largest of its previous value
// and the value of newScore
method updateHighScore(newScore: Number) -> Done {

}

