to the second requirement: that Emerald support statically typed polymorphism. Let us first consider an
example of implicit polymorphism:

const map «— typeobject m
operation apply[a: t] — [r: ¢]
forall ¢
end m

Here is an object that has type map:

const identity «— object id
operation apply[e: t] — [r: t]
forall ¢
T — €
end apply
end id

The operation apply of identity simply returns its argument; it is the identity function. It is important
that the syntactic type of the result be the same as that of the argument; this is achieved by use of the
type parameter ¢, which is introduced by the clause forall ¢, and is bound to the syntactic type of the
formal parameter a. The signature of identity.apply thus depends on the type of its argument e; we can
now appreciate why signatures must be functions. Referring back to rule (9) in Section 3, we see that
the argument to the signature function is (r[e], ). The signature of apply in map is A(¢, v).(¢, t); when
applied to {7[e], e) the result is (r[e], 7[e]). In the invocation identity.apply[e], the type of the argument e
trivially conforms to arg (7[e], 7[e]) = T[e], the conformity condition in the antecedent of rule (9) is always
satisfied, and the invocation is type correct whenever the other conditions are satisfied. Moreover, the type
of identity.apply[e] is res (r[e], T[e]) = 7[e] as required.



